References
-
Burland, J.B.; Broms, B.B.; DeMello, V.F.B.:Behaviour of foundations and structures. In: Proceedings of 9th ICSMFE, vol. 2, pp. 496–546. (1977)
-
Horikoshi, K.; Randolph, M. F.: Settlement of piled raft foundations on clay. In: Proceedings of Centrifuge, vol. 94, pp. 449–454. (1994)
-
Kakurai, M.; Yamashita, K.; and Tomono, M.: Settlement behaviour of piled raft foundation on soft ground. In: Proceedings of the 8th ARCSMFE, vol. 1, pp. 373–376. (1987)
-
Bhaduri, A.; Choudhury, D.: Serviceability-based finite-element approach on analyzing combined pile-raft foundation. Int. J. Geomech. 20(2), 04019178 (2020)
-
Choudhury, D.; Kumar, A.; Patil, M.; Rao, V. D.; Bhaduri, A.; Singbal, P.; and Shukla, J.: Sustainable foundation solutions for industrial structures under earthquake conditions—theory to practice. In: Proc., 16th Asian Regional Conf. on Soil Mechanics and Geotechnical Engineering (16ARC), International Society for Soil Mechanics and Geotechnical Engineering, Darmstadt, Germany. (2019)
-
Katzenbach, R.; Arslan, U.; Moormann, C.: Chapter 13 Piled raft foundation projects in Germany. In: Hemsley, J.A. (Ed.) Design applications of raft foundations, pp. 323–391. Thomas Telford, London (2000)
-
Katzenbach, R.; Leppla, S.; Choudhury, D.: Foundation systems for high-rise structures, p. 1–298. CRC Press, Taylor and Francis Group, UK (2016)
-
Poulos, H.G.: Piled raft foundations: design and applications. Géotechnique 51(2), 95–113 (2001)
-
Reul, O.; Randolph, M.F.: Design strategies for piled rafts subjected to nonuniform vertical loading. J.Geotechn. Geoenviron. Eng. 130(1), 1–11 (2004)
-
Yamashita, K.; Kakurai, M.; Yamada, T.; and Kuwabara, F.: Settlement behaviour of a five-story building on piled raft foundation. In: Proc., 2nd Int. Geotechnical Seminar on Deep Foundations on Bored and Auger Piles, Vol. 2, pp. 351–356 CRC Press, Boca Raton, FL. (1993)
-
Yamashita, K.; Yamada, T.; Hamada, J.: Investigation of settlement and load sharing on piled rafts by monitoring full-scale structures. Soils Found. 51(3), 513–532 (2011)
-
Yamashita, K.; Hamada, J.; Onimaru, S.; Higashino, M.: Seismic behaviour of piled raft with ground improvement supporting a base-isolated building on soft ground in Tokyo. Soils Found. 52(5), 1000–1015 (2012)
-
Yamashita, K.; Hashiba, T.; Ito, H.; Tanikawa, T.: Performance of piled raft foundation subjected to strong seismic motion. Geotech. Eng. J SEAGS AGSSEA 45(2), 33–39 (2014)
-
Yamashita, K.; Shigeno, Y.; Hamada, J.; Chang, D.W.: Seismic response analysis of piled raft with grid-form deep mixing walls under strong earthquakes with performance-based design concerns. Soils Found. 58, 65–84 (2018)
-
Yamashita, K.: Settlement of piled raft subjected to strong seismic motion. Jpn. Geotech. Soc Spec. Publ. 2(34), 1233–1237 (2016)
-
Hadjian, A.; Fallgren, R.; Tufenkjian, S.: Dynamic soil-pile-structure interaction-the state-of-the-practice in piles under dynamic loads, p. 1–26. Geotechnical Special Publication, ASCE (1992)
-
Chanda, D.; Saha, R.; Haldar, S.; Choudhury, D.: State-of-the-art review on responses of combined piled raft foundation subjected to seismic loads using static and dynamic approaches. Soil Dyn. Earthq. Eng. 169, 107869 (2023)
-
Alavi, E.; and Alidoost, M.: Soil-structure interaction effects on seismic behaviour of base-isolated buildings. In: Proceedings of:15WCEE. (2012)
-
American Society of Civil Engineers (ASCE): Minimum design loads and associated criteria for buildings and other structures. Reston, VA 2, 1–889 (2017)
-
Badry, P.; Satyam, N.: Seismic soil-structure interaction analysis for asymmetrical buildings supported on the piled raft for the 2015 Nepal earthquake. J. Asian Earth Sci. 133, 1–35 (2016). https://doi.org/10.1016/j.jseaes.2016.03.014
-
Bagheri, M.; Jamkhaneh, M.E.; Samali, B.: Effect of seismic soil-pile-structure interaction on mid and high-rise steel buildings resting on a group of pile foundations. Int. J. Geomech. 18(9), 04018103 (2018). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001222
-
Dowrick, D.J.: Earthquake resistant design: A manual for engineers and architects. John Wiley and Sons Ltd., New York (1977)
-
Maheshwari, B. K.: Recent advances in seismic soil-structure interaction. In: Proceedings of the Indian Geotechnical Conference held in Kakinada, Andhra Pradesh, pp. 2463–2477. (2014)
-
Maheshwari, B.K.; Firoj, M.: A state of art: seismic soil–structure interaction for nuclear power plants. In: Latest Developments in Geotechnical Earthquake Engineering and soil Dynamics, pp. 393–409. Springer Singapore, Singapore (2021)
-
Mendoza, M.J.; Auvinet, G.: The Mexico earthquake of september 19, 1985: Behavior of building foundations in Mexico city. Earthq. Spectra J., EERI 4(4), 835–853 (1988)
-
Meymand, P.H.: Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay. Ph.D. thesis in Engineering-Civil Engineering, University of California, Berkley. (1998)
-
Seed, R. B.; Dickenson, S. E.; Riemer, M. F.; Bray, J. D.; Sitar, N.; Mitchell, J. K.; Idriss, I. M.; Kayen, R. E.; Kropp, A.; Harder, Jr. L. F.; Power, M. S.: Preliminary report on the principal geotechnical aspects of the October 17, 1989 Loma Prieta Earthquake. Report No.UCB/EERC-90/05”, Earthquake Engineering, Research Center, University of California, Berkeley, April, p. 137. (1990)
-
Yashinsky, M.: The Loma Prieta, California, Earthquake of October 17, 1989–Highway Systems, Professional Paper 1552-B. USGS, Washington (1989)
-
Federal Emergency Management Agency (FEMA-450): Geotechnical Earthquake Engineering: Design Examples, Geotechnical 15–4–1. (2005)
-
Applied Technology Council (ATC 3-06): Tentative provisions for the development of seismic regulations for building, California. (1978)
-
American Society of Civil Engineers (ASCE/SEI 7-10): Minimum design loads for buildings and other structures, Virginia. (2010)
-
American Society of Civil Engineers (ASCE/SEI 7-16): Minimum design loads for buildings and other structures”, Virginia. (2016)
-
Federal Emergency Management Agency (FEMA): NEHRP recommended seismic provisions for new buildings and other structures, Washington DC, P-1050. (2015)
-
NEHRP: Recommended provisions for seismic regulations for new buildings and other structures: Parts 1 and 2. Building Seismic Safety Council, Washington, DC, U.S.A (1997)
-
Eurocode 8: EN 1998-1: Design of structures for earthquake resistance – part 1: general rules, seismic actions, and rules for buildings, Brussels: European Committee for Standardization. (2004)
-
Eurocode 8: EN 1998-5: Design of structures for earthquake resistance-part 5: foundations, retaining structures and geotechnical aspects, Brussels: European Committee for Standardization. (2004)
-
JSCE 15: Standard specifications for concrete structures—design, Tokyo: Japan Society of Civil Engineers. (2015)
-
NZS 1170.5: Structural design actions-part 5: earthquake actions – New Zealand, Wellington: Standards New Zealand. (2004)
-
Azizkandi, A.S.; Baziar, M.H.; Yeznabad, A.F.: 3D dynamic finite element analyses and 1 g shaking table tests on seismic performance of connected and nonconnected piled raft foundations. KSCE J. Civ. Eng. 22(5), 1750–1762 (2018). https://doi.org/10.1007/s12205-017-0379-2
-
Azizkandi, A.S.; Aghamolaei, M.; Hasanaklou, S.H.: Evaluation of dynamic response of connected and non-connected piled raft systems using shaking table tests. Soil Dyn. Earthq. Eng. 139, 106366 (2020). https://doi.org/10.1016/j.soildyn.2020.106366
-
Azizkandi, A.S.; Aghamolaei, M.; Hasanaklou, S.H.: Response of batter-piled raft foundations with different superstructures during seismic events: outcomes from shaking table tests. Int. J. Geomech. 22(10), 04022162 (2022)
-
Banerjee, S.; Goh, S.H.; Lee, F.H.: The response of soft clay strata and clay-pile- raft systems to seismic shaking. J. Earthq. Tsunami 1(3), 233–255 (2007)
-
Banerjee, S.; Goh, S.H.; Lee, F.H.: Earthquake-induced bending moment in fixed-head piles in soft clay. Géotechnique 64(6), 431–446 (2014)
-
Baziar, M.H.; Rafiee, F.; Azizandi, A.S.; Lee, C.H.: Effect of super-structure frequency on the seismic behaviour of pile-raft foundation using physical modelling. Soil Dyn. Earthq. Eng. 104, 196–209 (2018)
-
Baziar, M.H.; Rafiee, F.; Lee, C.J.; Azizkandi, A.S.: Effect of superstructure on the dynamic response of nonconnected piled raft foundation using centrifuge modelling. Int. J. Geomech. 18(10), 04018126 (2018)
-
Fu, Q.: Experimental analysis on dynamic response of X-section piled raft composite foundation under cyclic axial load for ballastless track in soft soil. Shock Vib (2021). https://doi.org/10.1155/2021/4561806
-
Goh, S.H.; Zhang, L.: Estimation of peak acceleration and bending moment for pile-raft systems embedded in soft clay subjected to far-field seismic excitation. J. Geotech. Geoenviron. Eng. 143(11), 04017082 (2017)
-
Hamada, J.: Bending moment of piles on piled raft foundation subjected to ground deformation during earthquake in centrifuge model test. Jpn. Geotechn. Soc. Spec. Publ. 2(34), 1222–1227 (2016)
-
Horikoshi, K.; Matsumoto, T.; Hashizume, Y.; Watanabe, T.; Fukuyama, H.: Performance of piled raft foundations subjected to dynamic loading. Int. J. Phys. Model 3(2), 51–62 (2003)
-
Kaneda, K.; Hamada, J.; and Tanikawa, T.: Experiment and numerical simulation of pile stress on pile and piled raft foundations subjected to ground deformation during earthquakes. In: Computer Methods and Recent Advances in Geomechanics: Proceedings of the 14th International Conference of International Association for Computer Methods and Recent Advances in Geomechanics, IACMAG 2014, pp. 907–910, Taylor & Francis Books Ltd. (2015)
-
Kang, M.A.; Banerjee, S.; Lee, F.H.; Xie, H.P.: Dynamic soil-pile-raft interaction in normally consolidated soft clay during earthquakes. J. Earthq. Tsunami 6(4), 1250031-1–1250031-12 (2012)
-
Liang, F.; Li, T.; Qian, Y.; Wang, C.; Jia, Y.: Investigating the seismic isolation effect of the cushioned pile raft foundation in soft clay through dynamic centrifuge tests. Soil Dyn. Earthq. Eng. 142, 106554 (2021)
-
Matsumoto, T.; Fukumura, K.; Kitiyodom, P.; Horikoshi, K.; Oki, A.: Shaking table tests on model piled rafts in sand considering influence of superstructures. Int. J. Phys. Model. Geotech. 4(3), 21–38 (2004)
-
Matsumoto, T.; Nemoto, H.; Mikami, H.; Yaegashi, K.; Arai, T.; Kitiyodom, P.: Load tests of piled raft models with different pile head connection conditions and their analyses. Soils Found. 50(1), 63–81 (2010)
-
Nakai, S.; Kato, H.; Ishida, R.; Mano, H.; and Nagata, M.: Load bearing mechanism of piled raft foundation during earthquake. In: Proceedings Third UJNR Workshop on Soil-Structure Interaction, Menlo Park, California, USA. (2004)
-
Saha, R.; Haldar, S.; Dutta, S.C.: Influence of dynamic soil-pile raft-structure interaction: an experimental approach. Earthq. Eng. Eng. Vib. 14(4), 625–645 (2015)
-
Sahraeian, S.M.S.; Takemura, J.: Some contribution to rational design of piled raft foundation for oil storage tanks on non-liquefiable ground: application of dynamic centrifuge modelling. J. Seismol. Earthq. Eng., Int. Inst. Earthq. Eng. Seismol. 21(4), 1–9 (2019)
-
Unsever, Y.S.; Matsumoto, T.; Eshashi, K.; Kobayashi, S.: Behaviour of model pile foundations under dynamic loads in saturated sand. Bull. Earthq. Eng. (2016). https://doi.org/10.1007/s10518-016-0029-y
-
Vu, A.T.; Matsumoto, T.; Kenda, K.: Model vibration tests on piled raft and pile group foundations in dry sand. Geotech. Eng. J. SEAGS & AGSSEA 51(2), 95–102 (2020)
-
Yang, M.; Yang, J.: Centrifuge investigation on seismic response of piled raft foundation with large spacing in soft clay. Chin. J. Geotechn. Eng. 38(12), 2184–2193 (2016)
-
Yang, J.; Yang, M.; Chen, H.: Influence of pile spacing on seismic response of piled raft in soft clay: centrifuge modelling. Earthq. Eng. Eng. Vib. 18(4), 719–733 (2019)
-
Yang, Y.; Gong, W.; Cheng, Y.P.; Dai, G.; Zou, Y.; Liang, F.: Effect of soil-pile-structure interaction on seismic behaviour of nuclear power station via shaking table tests. Structures 33, 2990–3001 (2021)
-
Yang, Y.; Fan, H.; Cheng, Y.P.; Gong, W.; Dai, G.; Liang, F.; Jia, Y.: Seismic response of nuclear power station with disconnected pile-raft foundation using dynamic centrifuge tests. J. Clean. Prod. 379, 134572 (2022)
-
Zhang, L.; Goh, S.H.; Liu, H.: Seismic response of pile-raft-clay system subjected to a long-duration earthquake: centrifuge test and finite element analysis. Soil Dyn. Earthq. Eng. 92, 488–502 (2017)
-
Zhang, L.; Goh, S.H.; Yi, J.: A centrifuge study of the seismic response of pile-raft systems embedded in soft clay. Géotechnique 67(6), 479–490 (2017)
-
Akbari, A.; and Eslami, A.: Performance of raft, piled raft, and pile group foundations under earthquake loading. Proceeding of the 1st International Conference on Urban Construction in Vicinity of Active Faults, Tabriz, Iran. (2010)
-
Akbari, A.; Nikookar, M.; Feizbahr, M.: Reviewing performance of piled raft and pile group foundations under the earthquake loads. Res. Civ. Environ. Eng. 1(05), 287–299 (2013)
-
Akbari, A.; Eslami, A.; Nikookar, M.: Influence of Soil Stiffness on the Response of Piled Raft Foundations under Earthquake Loading. Transp. Infrastruct. Geotech. 8, 590–606 (2021)
-
Azizkandi, A.S.; Maali, T.; Baziar, M.H.: Response of piled raft foundation on soft clay under seismic load. In: Seventh International Conference on Case Histories in Geotechnical Engineering, Missouri University of Science and Technology. (2013)
-
Bazaz, H.B.; Akhtarpour, A.; Karamodin, A.: A study on the effects of piled-raft foundations on the seismic response of a high-rise building resting on clayey soil. Soil Dyn. Earthq. Eng. 1(145), 106712 (2021)
-
Bhaduri, A.; Rao, V.D.; Choudhury, D.: The behaviour of pile group and combined piled-raft foundation in liquefiable soil under seismic conditions. Geotech. Eng. J. SEAGS & AGSSEA 51(2), 130–138 (2020)
-
Bhattacharjee, T.; Chanda, D.; Saha, R.: Influence of soil flexibility and plan asymmetry on seismic behaviour of soil-piled raft-structure system. Structures 33(1), 1775–1788 (2021). https://doi.org/10.1016/j.istruc.2021.05.045
-
Chanda, D.; Saha, R.; Haldar, S.: Influence of inherent soil variability on seismic response of structure supported on pile foundation. Arab. J. Sci. Eng. 44(5), 5009–5025 (2019). https://doi.org/10.1007/s13369-018-03699-1
-
Chaudhuri, C.H.; Chanda, D.; Saha, R.; Haldar, S.: Three-dimensional numerical analysis on seismic behaviour of soil-piled raft-structure system. Structures 28, 905–922 (2020). https://doi.org/10.1016/j.istruc.2020.09.024
-
Das, B.; Saha, R.; Haldar, S.: Effect of in-situ variability of soil on seismic design of piled raft supported structure incorporating dynamic soil-structure-interaction. Soil Dyn. Earthq. Eng. 84, 251–268 (2016)
-
Dash, S.R.; Govindaraju, L.; Bhattacharya, S.: A case study of damages of the Kandla port and customs office tower supported on a mat–pile foundation in liquefied soils under the 2001 Bhuj earthquake. Soil Dyn. Earthq. Eng. 29(2), 333–346 (2009)
-
Dutta, S.C.; Saha, R.; Haldar, S.: Inelastic seismic behaviour of soil-pile raft-structure system under bi-directional ground motion. Soil Dyn. Earthq. Eng. 67, 133–157 (2014)
-
Emani, P.K.; Maheshwari, B.K.: Dynamic impedances of pile groups with embedded caps in homogeneous elastic soils using CIFECM. Soil Dyn. Earthq. Eng. 29(6), 963–973 (2009)
-
Eslami, M.M.; Aminikhah, A.; Ahmadi, M.M.: A comparative study on pile group and piled raft foundations (PRF) behaviour under seismic loading. Comput. Methods Civil Eng. 2(2), 185–199 (2011)
-
Firoj, M.; Maheshwari, B.K.: Effect of CPRF on nonlinear seismic response of an NPP structure considering raft-pile-soil-structure-interaction. Soil Dyn. Earthq. Eng. 158, 107295 (2022)
-
Firoj, M.; Maheshwari, B.K.: A new nonlinear spring-dashpot model of CPRF of NPP structure based on coupled BEM-FEM approach. Earthq. Eng. Struct. Dyn. (2022). https://doi.org/10.1002/eqe.3794
-
Kumar, A.; Choudhury, D.; Katzenbach, R.: Effect of Earthquake on Combined Pile-Raft Foundation. Int. J. Geomech. 16(5), 04016013 (2016)
-
Li, J.; Xie, X.; Zhang, Q.; Fang, P.; Wang, W.: Distress evaluation and remediation for a high-rise building with pile-raft foundation. J. Perform. Constr. Facil. 28(4), 04014005 (2014)
-
Liu, Y.; Zhang, L.: Seismic response of pile-raft system embedded in spatially random clay. Géotechnique 69(7), 638–645 (2019)
-
Mayoral, J.M.; Alberto, Y.; Mendoza, M.J.; Romo, M.P.: Seismic response of an urban bridge-support system in soft clay. Soil Dyn. Earthq. Eng. 29(5), 925–938 (2009)
-
Mayoral, J.M.; Flores, A.F.; Romo, M.P.: Seismic response evaluation of an urban overpass. Earthq. Eng. Struct. Dyn. 40, 827–845 (2011)
-
Mendoza, M.J.; Romo, M.P.; Orozco, M.; Dominguez, L.: Static and seismic behavior of a friction pile-box foundation in Mexico City clay. Soils Found. 40(4), 143–154 (2000)
-
Nguyen, T.T.V.; Nagai, H.; Tsuchiya, T.: Seismic response of piled raft foundation in soft ground using 3D-FEM. Adv. Soft Ground. Eng. 40, 495–503 (2015)
-
Nguyen, V.T.; Hassen, G.; Buhan, P.: Assessing the dynamic stiffness of piled-raft foundations by means of a multiphase model. Comput. Geotech. 71, 124–135 (2016)
-
Onimaru, S.; Hamada, J.; Nakamura, N.; and Yamashita, K.: Dynamic soil-structure interaction of a building supported by piled raft and ground improvement during the 2011 Tohoku Earthquake. In: Proc. 15 the World Conference of Earthquake Engineering. (2012)
-
Rasouli, H.; Fatahi, B.: A novel cushioned piled raft foundation to protect buildings subjected to normal fault rupture. Comput. Geotech. 106, 228–248 (2019)
-
Saadatinezhad, M.; Lakirouhani, A.; Jabini Asli, S.: Seismic response of non-connected piled raft foundations. Int. J. Geotech. Eng. (2019). https://doi.org/10.1080/19386362.2019.1565392
-
Saha, R.; Dutta, S.C.; Haldar, S.: Seismic response of soil-pile raft-structure system. J. Civ. Eng. Manag. 21(2), 144–164 (2015)
-
Saha, R.; Dutta, S.C.; Haldar, S.: Effect of the raft and pile stiffness on seismic response of soil piled raft-structure system. Struct. Eng. Mech. 55(1), 161–189 (2015)
-
Saha, R.; Pal, A.; Haldar, S.: Appraisal of the In Situ Variability and Modeling Uncertainty of Dynamic Soil-Piled Raft-Structure Interaction on Seismic Response: A Probabilistic Approach. In: Geo-Environmental and Sustainability- Linkages and Directions, pp. 621–630. Publisher, Springer Singapore (2017)
-
Saha, R.; Dutta, S.C.; Haldar, S.; Kumar, S.: Effect of soil-pile raft-structure interaction on elastic and inelastic seismic behaviour. Structures 26, 378–395 (2020)
-
Varghese, R.; Boominathan, A.; Banerjee, S.: Seismic response characteristics of a piled raft in clay. J. Earthq. Tsunami (2019). https://doi.org/10.1142/S1793431119500052
-
Varghese, R.; Boominathan, A.; Banerjee, S.: Stiffness and load sharing characteristics of piled raft foundations subjected to dynamic loads. Soil Dyn. Earthq. Eng. 133, 106117 (2020)
-
Bhaduri, A.; Choudhury, D.: Steady-state response of flexible combined pile-raft foundation under dynamic loading. Soil Dyn. Earthq. Eng. 145(2), 106664 (2021). https://doi.org/10.1016/j.soildyn.2021.106664
-
Chang, D.W.; Lee, M.R.; Hong, M.Y.; Wang, Y.C.: A simplified modeling for seismic responses of rectangular foundation on piles subjected to horizontal earthquakes. J. GeoEng. 11(3), 109–121 (2016)
-
Liu, C.L.; Ai, Z.Y.: Vertical harmonic vibration of piled raft foundations in layered soils. Int. J. Numer. Anal. Meth. Geomech. 41(17), 1711–1723 (2017)
-
Nagai, H.: Simplified method of estimating the dynamic impedance of a piled raft foundation subjected to inertial loading due to an earthquake. Comput. Geotech. 105, 69–78 (2019)
-
Roy, J.; Kumar, A.; Choudhury, D.: Natural frequencies of piled raft foundation including superstructure effect. Soil Dyn. Earthquake Eng. 112, 69–75 (2018). https://doi.org/10.1016/j.soildyn.2018.04.048
-
Chanda, D.; Nath, U.; Saha, R.; Haldar, S.: Development of lateral capacity-based envelopes of piled raft foundation under combined V-M-H loading. Int. J. Geomech. (2021). https://doi.org/10.1061/(ASCE)GM.1943-5622.0002023
-
Chanda, D.; Saha, R.; Haldar, S.: “Behaviour of piled raft foundation in sand subjected to combined V-M-H loading”, Ocean Eng. Elsevier 216, 107596 (2020). https://doi.org/10.1016/j.oceaneng.2020.107596
-
Abaqus/CAE User’s Manual License Key- 00-1E-8C-CE-96-08. (2008)
-
Banerjee, S.:Centrifuge and Numerical modelling of soft-clay piled raft foundations subjected to seismic loading. Ph.D. thesis, National University of Singapore. (2009)
-
Lu, J. C.:Parallel finite element modeling of earthquake ground response and liquefaction. Ph.D. thesis, University of California, San Diego. (2006)
-
Patil, G.; Choudhury, D.; Mondal, A.: Nonlinear dynamic soil–foundation–superstructure interaction analysis for a reactor building supported on a combined piled–raft system. Int. J. Geomech. (2023). https://doi.org/10.1061/IJGNAI.GMENG-8096
-
Zhang, L.: Centrifuge and numerical modelling of the seismic response of pile groups in soft clays. Ph.D. thesis, National University of Singapore. (2014)
-
Kuhlemeyer, R.L.; Lysmer, J.: Finite element method accuracy for wave propagation problems. J. Soil Mech. Found. Div. 99(5), 421–427 (1973)
-
Banerjee, R.; Sengupta, A.; Reddy, G.R.: Study of a surface raft foundation in dry cohesionless soil subjected to dynamic loading. Current Science 117(11), 1800–1812 (2019). https://doi.org/10.18520/cs/v117/i11/1800-1812
-
Chatterjee, K.; Choudhury, D.; Rao, V.D.; Poulos, H.G.: Seismic response of single piles in liquefiable soil considering P-delta effect. Bull. Earthq. Eng. 17(6), 2935–2961 (2019)
-
Chen, W.F.; Saleeb, A.F.: Constitutive equations for engineering materials, Vol. 1—elasticity and modelling. Comput. Methods Appl. Mech. Eng. 36(3), 373–374 (1983)
-
James, M.; Halder, H.: Seismic vulnerability of jacket supported large offshore wind turbine considering multidirectional ground motions. Structures 43(2022), 407–423 (2022)
-
Rayhani, M.H.T.; El Naggar, M.H.: Numerical modelling of seismic response of rigid Foundation on soft soil. Int. J. Geomech. 8(6), 336–346 (2008)
-
Gazetas, G.: Seismic Response of End-Bearing Single Piles. Soil Dyn. Earthq. Eng. 3(2), 82–93 (1984)
-
Bowels, J.E.: Foundation Analysis and Design. The McGraw-Hill Companies Inc, New York (1997)
-
Boulanger, R.W.; Curras, C.J.; Kutter, B.L.; Wilson, D.W.; Abghari, A.: Seismic soil-pile-structure interaction experiments and analyses. J. Geotech. Geoenviron. Eng. 125(9), 750–759 (1999)
-
Chanda, D.; Saha, R.; Haldar, S.: (2022a), “Influence of Combined V-M-H Loading on design response of optimum piled raft configurations with non-uniform pile length”. Innovative Infrastructure Solution, Springer 7, 170 (2022). https://doi.org/10.1007/s41062-022-00778-z
-
Chanda, D.; Saha, R.; Haldar, S.; Nayak, B.C.; Kumar, E.V.: Scaled modeled tests and finite element numerical study on lateral responses of PRF system under V-H-M loading. Geomech. Geoeng. 2022, 1–25 (2022). https://doi.org/10.1080/17486025.2022.2048092
-
Finn, W.D.L.; Fujita, N.: Piles in liquefiable soils: seismic analysis and design issues. Soil Dyn. Earthq. Eng. 22(9–12), 731–742 (2002)
-
Jeremic, B.; Jie, G.; Preisig, M.; Tafazzoli, N.: Time-domain simulation of soil foundation-structure interaction in non-uniform soils. Earthq. Eng. Struct. Dyn. 38(5), 699–718 (2009)
-
Rovithis, E.N.; Pitilakis, K.D.; Mylonakis, G.E.: Seismic analysis of coupled soil-pile-structure systems leading to the definition of a pseudo-natural SSI frequency. Soil Dyn. Earthq. Eng. 29(6), 1005–1015 (2009)
-
Chen, F.; Liu, L.; Lai, F.; Gavin, K.; Flynn, K.N.; Li, Y.: (2022), “Numerical analyses of energy balance and installation mechanisms of large diameter tapered monopiles by impact driving. Ocean Eng. 266, 113017 (2022)
-
Veletsos, A.S.; Meek, J.W.: Dynamic behavior of building—foundation systems. Earthq. Eng. Struct. Dyn. 3, 121–138 (1974)
-
Gazetas, G.: Formulas and charts for impedances of surface and embedded foundations. J. Geotech. Eng., ASCE 117(9), 1363–1381 (1991)
-
Kramer, S.L.: Geotechnical earthquake engineering. Prentice-Hall, New Jersey (1996)
-
Velez, A.; Gazetas, G.; Krishnan, R.: Lateral dynamic response of constrained head piles. J. Geotech. Eng., ASCE 109(8), 1063–1081 (1982)
-
Roy, R.; Dutta, S.C.: Inelastic seismic demand of low-rise buildings with soil flexibility. Int. J. Nonlinear Mech. 45, 419–432 (2010)
-
IS 1893: Part I: Bureau of Indian Standards, Indian Standard Criteria for Earthquake Resistant Design of Structures, BIS, New Delhi, India. (2016)
-
Bhattacharya, S.; De Risi, R.; Lombardi Ali, A.; Demirci, H.E.; Haldar, S.: Technical note on the seismic analysis and design of offshore wind turbines. Soil Dyn. Earthq. Eng. 145, 106692 (2021)
-
Reyes, J.C.; Kalkan, E.: How many records should be used in an ASCE/SEI-7 ground motion scaling procedure? Earthq. Spectra 28(3), 1223–1242 (2012)
-
Pavlovic, V.D.; Velickovic, Z.S.: Measurement of the seismic waves propagation velocity in the real medium. Sci. J. Facta Universitatis, Ser.: Phys., Chem., and Technol. 1(5), 63–73 (1998)
-
Clancy, P.; Randolph, M.F.: Simple design tools for piled raft foundations. Geotechnique 46(2), 313–328 (1996)
-
Leung, Y.F.; Klar, A.; Soga, K.: Theoretical study on pile length optimization of pile groups and piled rafts. J. Geotech. Geoenviron. Eng., ASCE (2010). https://doi.org/10.1061/_ASCE_GT.1943-5606.0000206
-
Wood, D.M.; Crewe, A.; Taylor, C.: Shake table testing of geotechnical models. Int. J. Phys. Model. Geotech. 2(1), 1–13 (2002)
-
Wood, D.M.: Geotechnical modelling. Spon Press, Taylor and Francis Group, New York (2004)
-
DebRoy, S.; Pandey, A.; Saha, R.: Shake table study on seismic soil-pile foundation-structure interaction in soft clay. Structures 29(2021), 1229–1241 (2020)
-
Kumar, A.; Choudhury, D.: Development of new prediction model for capacity of combined pile–raft foundations. Comput. Geotech. 97, 62–68 (2018)
-
Bhattacharya, S.; Lombardi, D.; Dihoru, L.; Dietz, M.S.; Crewe, A.J.; Taylor, C.A.: Model container design for soil–structure interaction studies. In: Role of Seismic Testing Facilities in Performance-Based Earthquake Engineering, pp. 135–58. Springer, The Netherlands (2012)
-
Lombardi, D.; Bhattacharya, S.; Scarpa, F.; Bianchi, M.: Dynamic response of a geotechnical rigid model container with absorbing boundaries. Soil Dyn. Earthq. Eng. 69, 46–56 (2015)
-
Brandon, T.L.; and Clough, G.W.:Methods of Sample Fabrication in the Virginia Tech Calibration Chamber.In: Proceedings of the First International Symposium on Calibration Chamber Testing, International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE), New York, pp.119–133. (1991)
-
Lo Presti, D.C.F.; Pedroni, S.; Crippa, V.: Maximum dry density of cohesionless soils and by pluviation ASTM D4253–83: a comparative study. Geotech. Test. J.J. 15(2), 180–189 (1992)
-
Chaudhuri, S. R.; and Hutchinson, T. C.:Distribution of peak horizontal floor acceleration for estimating nonstructural element vulnerability. In: Proc.13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada.
-
Akhlaghi, H.; and Moghadam, A.S.: Height-Wise Distribution of Peak Horizontal Floor Acceleration (PHFA). In: Proc. The 14th World Conference on Earthquake Engineering, October 12–17, Beijing, China. (2008)
-
U. B. C.: Uniform Building Code, volume 2: structural Engineering Design Provisions”, 3rd Printing, International Conference of Building Officials, USA. (1997)
-
NEHRP: Recommended provisions for seismic regulations for new buildings, 2000 Edition. Building Seismic Safety Council, Washington, D.C. (2000)
-
International Building Code (IBC): Whittier, Calif. (2006)
-
El-Attar, A.: Dynamic analysis of combined piled raft system. Ain Shams Eng. J. 12(2021), 2533–2547 (2021)