seismic-behaviour-of-rc-framed-building-supported-on-combined-piled-raft-foundation-in-sandy-soil-|-arabian-…-–-springer

Seismic Behaviour of RC Framed Building Supported on Combined Piled Raft Foundation in Sandy Soil | Arabian … – Springer

References

  1. Burland, J.B.; Broms, B.B.; DeMello, V.F.B.:Behaviour of foundations and structures. In: Proceedings of 9th ICSMFE, vol. 2, pp. 496–546. (1977)

  2. Horikoshi, K.; Randolph, M. F.: Settlement of piled raft foundations on clay. In: Proceedings of Centrifuge, vol. 94, pp. 449–454. (1994)

  3. Kakurai, M.; Yamashita, K.; and Tomono, M.: Settlement behaviour of piled raft foundation on soft ground. In: Proceedings of the 8th ARCSMFE, vol. 1, pp. 373–376. (1987)

  4. Bhaduri, A.; Choudhury, D.: Serviceability-based finite-element approach on analyzing combined pile-raft foundation. Int. J. Geomech. 20(2), 04019178 (2020)

    Article  Google Scholar 

  5. Choudhury, D.; Kumar, A.; Patil, M.; Rao, V. D.; Bhaduri, A.; Singbal, P.; and Shukla, J.: Sustainable foundation solutions for industrial structures under earthquake conditions—theory to practice. In: Proc., 16th Asian Regional Conf. on Soil Mechanics and Geotechnical Engineering (16ARC), International Society for Soil Mechanics and Geotechnical Engineering, Darmstadt, Germany. (2019)

  6. Katzenbach, R.; Arslan, U.; Moormann, C.: Chapter 13 Piled raft foundation projects in Germany. In: Hemsley, J.A. (Ed.) Design applications of raft foundations, pp. 323–391. Thomas Telford, London (2000)

    Chapter  Google Scholar 

  7. Katzenbach, R.; Leppla, S.; Choudhury, D.: Foundation systems for high-rise structures, p. 1–298. CRC Press, Taylor and Francis Group, UK (2016)

    Google Scholar 

  8. Poulos, H.G.: Piled raft foundations: design and applications. Géotechnique 51(2), 95–113 (2001)

    Article  Google Scholar 

  9. Reul, O.; Randolph, M.F.: Design strategies for piled rafts subjected to nonuniform vertical loading. J.Geotechn. Geoenviron. Eng. 130(1), 1–11 (2004)

    Article  Google Scholar 

  10. Yamashita, K.; Kakurai, M.; Yamada, T.; and Kuwabara, F.: Settlement behaviour of a five-story building on piled raft foundation. In: Proc., 2nd Int. Geotechnical Seminar on Deep Foundations on Bored and Auger Piles, Vol. 2, pp. 351–356 CRC Press, Boca Raton, FL. (1993)

  11. Yamashita, K.; Yamada, T.; Hamada, J.: Investigation of settlement and load sharing on piled rafts by monitoring full-scale structures. Soils Found. 51(3), 513–532 (2011)

    Article  Google Scholar 

  12. Yamashita, K.; Hamada, J.; Onimaru, S.; Higashino, M.: Seismic behaviour of piled raft with ground improvement supporting a base-isolated building on soft ground in Tokyo. Soils Found. 52(5), 1000–1015 (2012)

    Article  Google Scholar 

  13. Yamashita, K.; Hashiba, T.; Ito, H.; Tanikawa, T.: Performance of piled raft foundation subjected to strong seismic motion. Geotech. Eng. J SEAGS AGSSEA 45(2), 33–39 (2014)

    Google Scholar 

  14. Yamashita, K.; Shigeno, Y.; Hamada, J.; Chang, D.W.: Seismic response analysis of piled raft with grid-form deep mixing walls under strong earthquakes with performance-based design concerns. Soils Found. 58, 65–84 (2018)

    Article  Google Scholar 

  15. Yamashita, K.: Settlement of piled raft subjected to strong seismic motion. Jpn. Geotech. Soc Spec. Publ. 2(34), 1233–1237 (2016)

    Google Scholar 

  16. Hadjian, A.; Fallgren, R.; Tufenkjian, S.: Dynamic soil-pile-structure interaction-the state-of-the-practice in piles under dynamic loads, p. 1–26. Geotechnical Special Publication, ASCE (1992)

    Google Scholar 

  17. Chanda, D.; Saha, R.; Haldar, S.; Choudhury, D.: State-of-the-art review on responses of combined piled raft foundation subjected to seismic loads using static and dynamic approaches. Soil Dyn. Earthq. Eng. 169, 107869 (2023)

    Article  Google Scholar 

  18. Alavi, E.; and Alidoost, M.: Soil-structure interaction effects on seismic behaviour of base-isolated buildings. In: Proceedings of:15WCEE. (2012)

  19. American Society of Civil Engineers (ASCE): Minimum design loads and associated criteria for buildings and other structures. Reston, VA 2, 1–889 (2017)

    Google Scholar 

  20. Badry, P.; Satyam, N.: Seismic soil-structure interaction analysis for asymmetrical buildings supported on the piled raft for the 2015 Nepal earthquake. J. Asian Earth Sci. 133, 1–35 (2016). https://doi.org/10.1016/j.jseaes.2016.03.014

    Article  Google Scholar 

  21. Bagheri, M.; Jamkhaneh, M.E.; Samali, B.: Effect of seismic soil-pile-structure interaction on mid and high-rise steel buildings resting on a group of pile foundations. Int. J. Geomech. 18(9), 04018103 (2018). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001222

    Article  Google Scholar 

  22. Dowrick, D.J.: Earthquake resistant design: A manual for engineers and architects. John Wiley and Sons Ltd., New York (1977)

    Google Scholar 

  23. Maheshwari, B. K.: Recent advances in seismic soil-structure interaction. In: Proceedings of the Indian Geotechnical Conference held in Kakinada, Andhra Pradesh, pp. 2463–2477. (2014)

  24. Maheshwari, B.K.; Firoj, M.: A state of art: seismic soil–structure interaction for nuclear power plants. In: Latest Developments in Geotechnical Earthquake Engineering and soil Dynamics, pp. 393–409. Springer Singapore, Singapore (2021)

    Chapter  Google Scholar 

  25. Mendoza, M.J.; Auvinet, G.: The Mexico earthquake of september 19, 1985: Behavior of building foundations in Mexico city. Earthq. Spectra J., EERI 4(4), 835–853 (1988)

    Article  Google Scholar 

  26. Meymand, P.H.: Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay. Ph.D. thesis in Engineering-Civil Engineering, University of California, Berkley. (1998)

  27. Seed, R. B.; Dickenson, S. E.; Riemer, M. F.; Bray, J. D.; Sitar, N.; Mitchell, J. K.; Idriss, I. M.; Kayen, R. E.; Kropp, A.; Harder, Jr. L. F.; Power, M. S.: Preliminary report on the principal geotechnical aspects of the October 17, 1989 Loma Prieta Earthquake. Report No.UCB/EERC-90/05”, Earthquake Engineering, Research Center, University of California, Berkeley, April, p. 137. (1990)

  28. Yashinsky, M.: The Loma Prieta, California, Earthquake of October 17, 1989–Highway Systems, Professional Paper 1552-B. USGS, Washington (1989)

    Google Scholar 

  29. Federal Emergency Management Agency (FEMA-450): Geotechnical Earthquake Engineering: Design Examples, Geotechnical 15–4–1. (2005)

  30. Applied Technology Council (ATC 3-06): Tentative provisions for the development of seismic regulations for building, California. (1978)

  31. American Society of Civil Engineers (ASCE/SEI 7-10): Minimum design loads for buildings and other structures, Virginia. (2010)

  32. American Society of Civil Engineers (ASCE/SEI 7-16): Minimum design loads for buildings and other structures”, Virginia. (2016)

  33. Federal Emergency Management Agency (FEMA): NEHRP recommended seismic provisions for new buildings and other structures, Washington DC, P-1050. (2015)

  34. NEHRP: Recommended provisions for seismic regulations for new buildings and other structures: Parts 1 and 2. Building Seismic Safety Council, Washington, DC, U.S.A (1997)

    Google Scholar 

  35. Eurocode 8: EN 1998-1: Design of structures for earthquake resistance – part 1: general rules, seismic actions, and rules for buildings, Brussels: European Committee for Standardization. (2004)

  36. Eurocode 8: EN 1998-5: Design of structures for earthquake resistance-part 5: foundations, retaining structures and geotechnical aspects, Brussels: European Committee for Standardization. (2004)

  37. JSCE 15: Standard specifications for concrete structures—design, Tokyo: Japan Society of Civil Engineers. (2015)

  38. NZS 1170.5: Structural design actions-part 5: earthquake actions – New Zealand, Wellington: Standards New Zealand. (2004)

  39. Azizkandi, A.S.; Baziar, M.H.; Yeznabad, A.F.: 3D dynamic finite element analyses and 1 g shaking table tests on seismic performance of connected and nonconnected piled raft foundations. KSCE J. Civ. Eng. 22(5), 1750–1762 (2018). https://doi.org/10.1007/s12205-017-0379-2

    Article  Google Scholar 

  40. Azizkandi, A.S.; Aghamolaei, M.; Hasanaklou, S.H.: Evaluation of dynamic response of connected and non-connected piled raft systems using shaking table tests. Soil Dyn. Earthq. Eng. 139, 106366 (2020). https://doi.org/10.1016/j.soildyn.2020.106366

    Article  Google Scholar 

  41. Azizkandi, A.S.; Aghamolaei, M.; Hasanaklou, S.H.: Response of batter-piled raft foundations with different superstructures during seismic events: outcomes from shaking table tests. Int. J. Geomech. 22(10), 04022162 (2022)

    Article  Google Scholar 

  42. Banerjee, S.; Goh, S.H.; Lee, F.H.: The response of soft clay strata and clay-pile- raft systems to seismic shaking. J. Earthq. Tsunami 1(3), 233–255 (2007)

    Article  Google Scholar 

  43. Banerjee, S.; Goh, S.H.; Lee, F.H.: Earthquake-induced bending moment in fixed-head piles in soft clay. Géotechnique 64(6), 431–446 (2014)

    Article  Google Scholar 

  44. Baziar, M.H.; Rafiee, F.; Azizandi, A.S.; Lee, C.H.: Effect of super-structure frequency on the seismic behaviour of pile-raft foundation using physical modelling. Soil Dyn. Earthq. Eng. 104, 196–209 (2018)

    Article  Google Scholar 

  45. Baziar, M.H.; Rafiee, F.; Lee, C.J.; Azizkandi, A.S.: Effect of superstructure on the dynamic response of nonconnected piled raft foundation using centrifuge modelling. Int. J. Geomech. 18(10), 04018126 (2018)

    Article  Google Scholar 

  46. Fu, Q.: Experimental analysis on dynamic response of X-section piled raft composite foundation under cyclic axial load for ballastless track in soft soil. Shock Vib (2021). https://doi.org/10.1155/2021/4561806

    Article  Google Scholar 

  47. Goh, S.H.; Zhang, L.: Estimation of peak acceleration and bending moment for pile-raft systems embedded in soft clay subjected to far-field seismic excitation. J. Geotech. Geoenviron. Eng. 143(11), 04017082 (2017)

    Article  Google Scholar 

  48. Hamada, J.: Bending moment of piles on piled raft foundation subjected to ground deformation during earthquake in centrifuge model test. Jpn. Geotechn. Soc. Spec. Publ. 2(34), 1222–1227 (2016)

    Google Scholar 

  49. Horikoshi, K.; Matsumoto, T.; Hashizume, Y.; Watanabe, T.; Fukuyama, H.: Performance of piled raft foundations subjected to dynamic loading. Int. J. Phys. Model 3(2), 51–62 (2003)

    Google Scholar 

  50. Kaneda, K.; Hamada, J.; and Tanikawa, T.: Experiment and numerical simulation of pile stress on pile and piled raft foundations subjected to ground deformation during earthquakes. In: Computer Methods and Recent Advances in Geomechanics: Proceedings of the 14th International Conference of International Association for Computer Methods and Recent Advances in Geomechanics, IACMAG 2014, pp. 907–910, Taylor & Francis Books Ltd. (2015)

  51. Kang, M.A.; Banerjee, S.; Lee, F.H.; Xie, H.P.: Dynamic soil-pile-raft interaction in normally consolidated soft clay during earthquakes. J. Earthq. Tsunami 6(4), 1250031-1–1250031-12 (2012)

    Google Scholar 

  52. Liang, F.; Li, T.; Qian, Y.; Wang, C.; Jia, Y.: Investigating the seismic isolation effect of the cushioned pile raft foundation in soft clay through dynamic centrifuge tests. Soil Dyn. Earthq. Eng. 142, 106554 (2021)

    Article  Google Scholar 

  53. Matsumoto, T.; Fukumura, K.; Kitiyodom, P.; Horikoshi, K.; Oki, A.: Shaking table tests on model piled rafts in sand considering influence of superstructures. Int. J. Phys. Model. Geotech. 4(3), 21–38 (2004)

    Google Scholar 

  54. Matsumoto, T.; Nemoto, H.; Mikami, H.; Yaegashi, K.; Arai, T.; Kitiyodom, P.: Load tests of piled raft models with different pile head connection conditions and their analyses. Soils Found. 50(1), 63–81 (2010)

    Article  Google Scholar 

  55. Nakai, S.; Kato, H.; Ishida, R.; Mano, H.; and Nagata, M.: Load bearing mechanism of piled raft foundation during earthquake. In: Proceedings Third UJNR Workshop on Soil-Structure Interaction, Menlo Park, California, USA. (2004)

  56. Saha, R.; Haldar, S.; Dutta, S.C.: Influence of dynamic soil-pile raft-structure interaction: an experimental approach. Earthq. Eng. Eng. Vib. 14(4), 625–645 (2015)

    Article  Google Scholar 

  57. Sahraeian, S.M.S.; Takemura, J.: Some contribution to rational design of piled raft foundation for oil storage tanks on non-liquefiable ground: application of dynamic centrifuge modelling. J. Seismol. Earthq. Eng., Int. Inst. Earthq. Eng. Seismol. 21(4), 1–9 (2019)

    Google Scholar 

  58. Unsever, Y.S.; Matsumoto, T.; Eshashi, K.; Kobayashi, S.: Behaviour of model pile foundations under dynamic loads in saturated sand. Bull. Earthq. Eng. (2016). https://doi.org/10.1007/s10518-016-0029-y

    Article  Google Scholar 

  59. Vu, A.T.; Matsumoto, T.; Kenda, K.: Model vibration tests on piled raft and pile group foundations in dry sand. Geotech. Eng. J. SEAGS & AGSSEA 51(2), 95–102 (2020)

    Google Scholar 

  60. Yang, M.; Yang, J.: Centrifuge investigation on seismic response of piled raft foundation with large spacing in soft clay. Chin. J. Geotechn. Eng. 38(12), 2184–2193 (2016)

    Google Scholar 

  61. Yang, J.; Yang, M.; Chen, H.: Influence of pile spacing on seismic response of piled raft in soft clay: centrifuge modelling. Earthq. Eng. Eng. Vib. 18(4), 719–733 (2019)

    Article  Google Scholar 

  62. Yang, Y.; Gong, W.; Cheng, Y.P.; Dai, G.; Zou, Y.; Liang, F.: Effect of soil-pile-structure interaction on seismic behaviour of nuclear power station via shaking table tests. Structures 33, 2990–3001 (2021)

    Article  Google Scholar 

  63. Yang, Y.; Fan, H.; Cheng, Y.P.; Gong, W.; Dai, G.; Liang, F.; Jia, Y.: Seismic response of nuclear power station with disconnected pile-raft foundation using dynamic centrifuge tests. J. Clean. Prod. 379, 134572 (2022)

    Article  Google Scholar 

  64. Zhang, L.; Goh, S.H.; Liu, H.: Seismic response of pile-raft-clay system subjected to a long-duration earthquake: centrifuge test and finite element analysis. Soil Dyn. Earthq. Eng. 92, 488–502 (2017)

    Article  Google Scholar 

  65. Zhang, L.; Goh, S.H.; Yi, J.: A centrifuge study of the seismic response of pile-raft systems embedded in soft clay. Géotechnique 67(6), 479–490 (2017)

    Article  Google Scholar 

  66. Akbari, A.; and Eslami, A.: Performance of raft, piled raft, and pile group foundations under earthquake loading. Proceeding of the 1st International Conference on Urban Construction in Vicinity of Active Faults, Tabriz, Iran. (2010)

  67. Akbari, A.; Nikookar, M.; Feizbahr, M.: Reviewing performance of piled raft and pile group foundations under the earthquake loads. Res. Civ. Environ. Eng. 1(05), 287–299 (2013)

    Google Scholar 

  68. Akbari, A.; Eslami, A.; Nikookar, M.: Influence of Soil Stiffness on the Response of Piled Raft Foundations under Earthquake Loading. Transp. Infrastruct. Geotech. 8, 590–606 (2021)

    Article  Google Scholar 

  69. Azizkandi, A.S.; Maali, T.; Baziar, M.H.: Response of piled raft foundation on soft clay under seismic load. In: Seventh International Conference on Case Histories in Geotechnical Engineering, Missouri University of Science and Technology. (2013)

  70. Bazaz, H.B.; Akhtarpour, A.; Karamodin, A.: A study on the effects of piled-raft foundations on the seismic response of a high-rise building resting on clayey soil. Soil Dyn. Earthq. Eng. 1(145), 106712 (2021)

    Article  Google Scholar 

  71. Bhaduri, A.; Rao, V.D.; Choudhury, D.: The behaviour of pile group and combined piled-raft foundation in liquefiable soil under seismic conditions. Geotech. Eng. J. SEAGS & AGSSEA 51(2), 130–138 (2020)

    Google Scholar 

  72. Bhattacharjee, T.; Chanda, D.; Saha, R.: Influence of soil flexibility and plan asymmetry on seismic behaviour of soil-piled raft-structure system. Structures 33(1), 1775–1788 (2021). https://doi.org/10.1016/j.istruc.2021.05.045

    Article  Google Scholar 

  73. Chanda, D.; Saha, R.; Haldar, S.: Influence of inherent soil variability on seismic response of structure supported on pile foundation. Arab. J. Sci. Eng. 44(5), 5009–5025 (2019). https://doi.org/10.1007/s13369-018-03699-1

    Article  Google Scholar 

  74. Chaudhuri, C.H.; Chanda, D.; Saha, R.; Haldar, S.: Three-dimensional numerical analysis on seismic behaviour of soil-piled raft-structure system. Structures 28, 905–922 (2020). https://doi.org/10.1016/j.istruc.2020.09.024

    Article  Google Scholar 

  75. Das, B.; Saha, R.; Haldar, S.: Effect of in-situ variability of soil on seismic design of piled raft supported structure incorporating dynamic soil-structure-interaction. Soil Dyn. Earthq. Eng. 84, 251–268 (2016)

    Article  Google Scholar 

  76. Dash, S.R.; Govindaraju, L.; Bhattacharya, S.: A case study of damages of the Kandla port and customs office tower supported on a mat–pile foundation in liquefied soils under the 2001 Bhuj earthquake. Soil Dyn. Earthq. Eng. 29(2), 333–346 (2009)

    Article  Google Scholar 

  77. Dutta, S.C.; Saha, R.; Haldar, S.: Inelastic seismic behaviour of soil-pile raft-structure system under bi-directional ground motion. Soil Dyn. Earthq. Eng. 67, 133–157 (2014)

    Article  Google Scholar 

  78. Emani, P.K.; Maheshwari, B.K.: Dynamic impedances of pile groups with embedded caps in homogeneous elastic soils using CIFECM. Soil Dyn. Earthq. Eng. 29(6), 963–973 (2009)

    Article  Google Scholar 

  79. Eslami, M.M.; Aminikhah, A.; Ahmadi, M.M.: A comparative study on pile group and piled raft foundations (PRF) behaviour under seismic loading. Comput. Methods Civil Eng. 2(2), 185–199 (2011)

    Google Scholar 

  80. Firoj, M.; Maheshwari, B.K.: Effect of CPRF on nonlinear seismic response of an NPP structure considering raft-pile-soil-structure-interaction. Soil Dyn. Earthq. Eng. 158, 107295 (2022)

    Article  Google Scholar 

  81. Firoj, M.; Maheshwari, B.K.: A new nonlinear spring-dashpot model of CPRF of NPP structure based on coupled BEM-FEM approach. Earthq. Eng. Struct. Dyn. (2022). https://doi.org/10.1002/eqe.3794

    Article  Google Scholar 

  82. Kumar, A.; Choudhury, D.; Katzenbach, R.: Effect of Earthquake on Combined Pile-Raft Foundation. Int. J. Geomech. 16(5), 04016013 (2016)

    Article  Google Scholar 

  83. Li, J.; Xie, X.; Zhang, Q.; Fang, P.; Wang, W.: Distress evaluation and remediation for a high-rise building with pile-raft foundation. J. Perform. Constr. Facil. 28(4), 04014005 (2014)

    Article  Google Scholar 

  84. Liu, Y.; Zhang, L.: Seismic response of pile-raft system embedded in spatially random clay. Géotechnique 69(7), 638–645 (2019)

    Article  MathSciNet  Google Scholar 

  85. Mayoral, J.M.; Alberto, Y.; Mendoza, M.J.; Romo, M.P.: Seismic response of an urban bridge-support system in soft clay. Soil Dyn. Earthq. Eng. 29(5), 925–938 (2009)

    Article  Google Scholar 

  86. Mayoral, J.M.; Flores, A.F.; Romo, M.P.: Seismic response evaluation of an urban overpass. Earthq. Eng. Struct. Dyn. 40, 827–845 (2011)

    Article  Google Scholar 

  87. Mendoza, M.J.; Romo, M.P.; Orozco, M.; Dominguez, L.: Static and seismic behavior of a friction pile-box foundation in Mexico City clay. Soils Found. 40(4), 143–154 (2000)

    Article  Google Scholar 

  88. Nguyen, T.T.V.; Nagai, H.; Tsuchiya, T.: Seismic response of piled raft foundation in soft ground using 3D-FEM. Adv. Soft Ground. Eng. 40, 495–503 (2015)

    Google Scholar 

  89. Nguyen, V.T.; Hassen, G.; Buhan, P.: Assessing the dynamic stiffness of piled-raft foundations by means of a multiphase model. Comput. Geotech. 71, 124–135 (2016)

    Article  Google Scholar 

  90. Onimaru, S.; Hamada, J.; Nakamura, N.; and Yamashita, K.: Dynamic soil-structure interaction of a building supported by piled raft and ground improvement during the 2011 Tohoku Earthquake. In: Proc. 15 the World Conference of Earthquake Engineering. (2012)

  91. Rasouli, H.; Fatahi, B.: A novel cushioned piled raft foundation to protect buildings subjected to normal fault rupture. Comput. Geotech. 106, 228–248 (2019)

    Article  Google Scholar 

  92. Saadatinezhad, M.; Lakirouhani, A.; Jabini Asli, S.: Seismic response of non-connected piled raft foundations. Int. J. Geotech. Eng. (2019). https://doi.org/10.1080/19386362.2019.1565392

    Article  Google Scholar 

  93. Saha, R.; Dutta, S.C.; Haldar, S.: Seismic response of soil-pile raft-structure system. J. Civ. Eng. Manag. 21(2), 144–164 (2015)

    Article  Google Scholar 

  94. Saha, R.; Dutta, S.C.; Haldar, S.: Effect of the raft and pile stiffness on seismic response of soil piled raft-structure system. Struct. Eng. Mech. 55(1), 161–189 (2015)

    Article  Google Scholar 

  95. Saha, R.; Pal, A.; Haldar, S.: Appraisal of the In Situ Variability and Modeling Uncertainty of Dynamic Soil-Piled Raft-Structure Interaction on Seismic Response: A Probabilistic Approach. In: Geo-Environmental and Sustainability- Linkages and Directions, pp. 621–630. Publisher, Springer Singapore (2017)

    Google Scholar 

  96. Saha, R.; Dutta, S.C.; Haldar, S.; Kumar, S.: Effect of soil-pile raft-structure interaction on elastic and inelastic seismic behaviour. Structures 26, 378–395 (2020)

    Article  Google Scholar 

  97. Varghese, R.; Boominathan, A.; Banerjee, S.: Seismic response characteristics of a piled raft in clay. J. Earthq. Tsunami (2019). https://doi.org/10.1142/S1793431119500052

    Article  Google Scholar 

  98. Varghese, R.; Boominathan, A.; Banerjee, S.: Stiffness and load sharing characteristics of piled raft foundations subjected to dynamic loads. Soil Dyn. Earthq. Eng. 133, 106117 (2020)

    Article  Google Scholar 

  99. Bhaduri, A.; Choudhury, D.: Steady-state response of flexible combined pile-raft foundation under dynamic loading. Soil Dyn. Earthq. Eng. 145(2), 106664 (2021). https://doi.org/10.1016/j.soildyn.2021.106664

    Article  Google Scholar 

  100. Chang, D.W.; Lee, M.R.; Hong, M.Y.; Wang, Y.C.: A simplified modeling for seismic responses of rectangular foundation on piles subjected to horizontal earthquakes. J. GeoEng. 11(3), 109–121 (2016)

    Google Scholar 

  101. Liu, C.L.; Ai, Z.Y.: Vertical harmonic vibration of piled raft foundations in layered soils. Int. J. Numer. Anal. Meth. Geomech. 41(17), 1711–1723 (2017)

    Article  Google Scholar 

  102. Nagai, H.: Simplified method of estimating the dynamic impedance of a piled raft foundation subjected to inertial loading due to an earthquake. Comput. Geotech. 105, 69–78 (2019)

    Article  Google Scholar 

  103. Roy, J.; Kumar, A.; Choudhury, D.: Natural frequencies of piled raft foundation including superstructure effect. Soil Dyn. Earthquake Eng. 112, 69–75 (2018). https://doi.org/10.1016/j.soildyn.2018.04.048

    Article  Google Scholar 

  104. Chanda, D.; Nath, U.; Saha, R.; Haldar, S.: Development of lateral capacity-based envelopes of piled raft foundation under combined V-M-H loading. Int. J. Geomech. (2021). https://doi.org/10.1061/(ASCE)GM.1943-5622.0002023

    Article  Google Scholar 

  105. Chanda, D.; Saha, R.; Haldar, S.: “Behaviour of piled raft foundation in sand subjected to combined V-M-H loading”, Ocean Eng. Elsevier 216, 107596 (2020). https://doi.org/10.1016/j.oceaneng.2020.107596

    Article  Google Scholar 

  106. Abaqus/CAE User’s Manual License Key- 00-1E-8C-CE-96-08. (2008)

  107. Banerjee, S.:Centrifuge and Numerical modelling of soft-clay piled raft foundations subjected to seismic loading. Ph.D. thesis, National University of Singapore. (2009)

  108. Lu, J. C.:Parallel finite element modeling of earthquake ground response and liquefaction. Ph.D. thesis, University of California, San Diego. (2006)

  109. Patil, G.; Choudhury, D.; Mondal, A.: Nonlinear dynamic soil–foundation–superstructure interaction analysis for a reactor building supported on a combined piled–raft system. Int. J. Geomech. (2023). https://doi.org/10.1061/IJGNAI.GMENG-8096

    Article  Google Scholar 

  110. Zhang, L.: Centrifuge and numerical modelling of the seismic response of pile groups in soft clays. Ph.D. thesis, National University of Singapore. (2014)

  111. Kuhlemeyer, R.L.; Lysmer, J.: Finite element method accuracy for wave propagation problems. J. Soil Mech. Found. Div. 99(5), 421–427 (1973)

    Article  Google Scholar 

  112. Banerjee, R.; Sengupta, A.; Reddy, G.R.: Study of a surface raft foundation in dry cohesionless soil subjected to dynamic loading. Current Science 117(11), 1800–1812 (2019). https://doi.org/10.18520/cs/v117/i11/1800-1812

    Article  Google Scholar 

  113. Chatterjee, K.; Choudhury, D.; Rao, V.D.; Poulos, H.G.: Seismic response of single piles in liquefiable soil considering P-delta effect. Bull. Earthq. Eng. 17(6), 2935–2961 (2019)

    Article  Google Scholar 

  114. Chen, W.F.; Saleeb, A.F.: Constitutive equations for engineering materials, Vol. 1—elasticity and modelling. Comput. Methods Appl. Mech. Eng. 36(3), 373–374 (1983)

    Article  Google Scholar 

  115. James, M.; Halder, H.: Seismic vulnerability of jacket supported large offshore wind turbine considering multidirectional ground motions. Structures 43(2022), 407–423 (2022)

    Article  Google Scholar 

  116. Rayhani, M.H.T.; El Naggar, M.H.: Numerical modelling of seismic response of rigid Foundation on soft soil. Int. J. Geomech. 8(6), 336–346 (2008)

    Article  Google Scholar 

  117. Gazetas, G.: Seismic Response of End-Bearing Single Piles. Soil Dyn. Earthq. Eng. 3(2), 82–93 (1984)

    Google Scholar 

  118. Bowels, J.E.: Foundation Analysis and Design. The McGraw-Hill Companies Inc, New York (1997)

    Google Scholar 

  119. Boulanger, R.W.; Curras, C.J.; Kutter, B.L.; Wilson, D.W.; Abghari, A.: Seismic soil-pile-structure interaction experiments and analyses. J. Geotech. Geoenviron. Eng. 125(9), 750–759 (1999)

    Article  Google Scholar 

  120. Chanda, D.; Saha, R.; Haldar, S.: (2022a), “Influence of Combined V-M-H Loading on design response of optimum piled raft configurations with non-uniform pile length”. Innovative Infrastructure Solution, Springer 7, 170 (2022). https://doi.org/10.1007/s41062-022-00778-z

    Article  Google Scholar 

  121. Chanda, D.; Saha, R.; Haldar, S.; Nayak, B.C.; Kumar, E.V.: Scaled modeled tests and finite element numerical study on lateral responses of PRF system under V-H-M loading. Geomech. Geoeng. 2022, 1–25 (2022). https://doi.org/10.1080/17486025.2022.2048092

    Article  Google Scholar 

  122. Finn, W.D.L.; Fujita, N.: Piles in liquefiable soils: seismic analysis and design issues. Soil Dyn. Earthq. Eng. 22(9–12), 731–742 (2002)

    Article  Google Scholar 

  123. Jeremic, B.; Jie, G.; Preisig, M.; Tafazzoli, N.: Time-domain simulation of soil foundation-structure interaction in non-uniform soils. Earthq. Eng. Struct. Dyn. 38(5), 699–718 (2009)

    Article  Google Scholar 

  124. Rovithis, E.N.; Pitilakis, K.D.; Mylonakis, G.E.: Seismic analysis of coupled soil-pile-structure systems leading to the definition of a pseudo-natural SSI frequency. Soil Dyn. Earthq. Eng. 29(6), 1005–1015 (2009)

    Article  Google Scholar 

  125. Chen, F.; Liu, L.; Lai, F.; Gavin, K.; Flynn, K.N.; Li, Y.: (2022), “Numerical analyses of energy balance and installation mechanisms of large diameter tapered monopiles by impact driving. Ocean Eng. 266, 113017 (2022)

    Article  Google Scholar 

  126. Veletsos, A.S.; Meek, J.W.: Dynamic behavior of building—foundation systems. Earthq. Eng. Struct. Dyn. 3, 121–138 (1974)

    Article  Google Scholar 

  127. Gazetas, G.: Formulas and charts for impedances of surface and embedded foundations. J. Geotech. Eng., ASCE 117(9), 1363–1381 (1991)

    Article  Google Scholar 

  128. Kramer, S.L.: Geotechnical earthquake engineering. Prentice-Hall, New Jersey (1996)

    Google Scholar 

  129. Velez, A.; Gazetas, G.; Krishnan, R.: Lateral dynamic response of constrained head piles. J. Geotech. Eng., ASCE 109(8), 1063–1081 (1982)

    Article  Google Scholar 

  130. Roy, R.; Dutta, S.C.: Inelastic seismic demand of low-rise buildings with soil flexibility. Int. J. Nonlinear Mech. 45, 419–432 (2010)

    Article  Google Scholar 

  131. IS 1893: Part I: Bureau of Indian Standards, Indian Standard Criteria for Earthquake Resistant Design of Structures, BIS, New Delhi, India. (2016)

  132. Bhattacharya, S.; De Risi, R.; Lombardi Ali, A.; Demirci, H.E.; Haldar, S.: Technical note on the seismic analysis and design of offshore wind turbines. Soil Dyn. Earthq. Eng. 145, 106692 (2021)

    Article  Google Scholar 

  133. Reyes, J.C.; Kalkan, E.: How many records should be used in an ASCE/SEI-7 ground motion scaling procedure? Earthq. Spectra 28(3), 1223–1242 (2012)

    Article  Google Scholar 

  134. Pavlovic, V.D.; Velickovic, Z.S.: Measurement of the seismic waves propagation velocity in the real medium. Sci. J. Facta Universitatis, Ser.: Phys., Chem., and Technol. 1(5), 63–73 (1998)

    Google Scholar 

  135. Clancy, P.; Randolph, M.F.: Simple design tools for piled raft foundations. Geotechnique 46(2), 313–328 (1996)

    Article  Google Scholar 

  136. Leung, Y.F.; Klar, A.; Soga, K.: Theoretical study on pile length optimization of pile groups and piled rafts. J. Geotech. Geoenviron. Eng., ASCE (2010). https://doi.org/10.1061/_ASCE_GT.1943-5606.0000206

    Article  Google Scholar 

  137. Wood, D.M.; Crewe, A.; Taylor, C.: Shake table testing of geotechnical models. Int. J. Phys. Model. Geotech. 2(1), 1–13 (2002)

    Google Scholar 

  138. Wood, D.M.: Geotechnical modelling. Spon Press, Taylor and Francis Group, New York (2004)

    Book  Google Scholar 

  139. DebRoy, S.; Pandey, A.; Saha, R.: Shake table study on seismic soil-pile foundation-structure interaction in soft clay. Structures 29(2021), 1229–1241 (2020)

    Google Scholar 

  140. Kumar, A.; Choudhury, D.: Development of new prediction model for capacity of combined pile–raft foundations. Comput. Geotech. 97, 62–68 (2018)

    Article  Google Scholar 

  141. Bhattacharya, S.; Lombardi, D.; Dihoru, L.; Dietz, M.S.; Crewe, A.J.; Taylor, C.A.: Model container design for soil–structure interaction studies. In: Role of Seismic Testing Facilities in Performance-Based Earthquake Engineering, pp. 135–58. Springer, The Netherlands (2012)

    Chapter  Google Scholar 

  142. Lombardi, D.; Bhattacharya, S.; Scarpa, F.; Bianchi, M.: Dynamic response of a geotechnical rigid model container with absorbing boundaries. Soil Dyn. Earthq. Eng. 69, 46–56 (2015)

    Article  Google Scholar 

  143. Brandon, T.L.; and Clough, G.W.:Methods of Sample Fabrication in the Virginia Tech Calibration Chamber.In: Proceedings of the First International Symposium on Calibration Chamber Testing, International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE), New York, pp.119–133. (1991)

  144. Lo Presti, D.C.F.; Pedroni, S.; Crippa, V.: Maximum dry density of cohesionless soils and by pluviation ASTM D4253–83: a comparative study. Geotech. Test. J.J. 15(2), 180–189 (1992)

    Article  Google Scholar 

  145. Chaudhuri, S. R.; and Hutchinson, T. C.:Distribution of peak horizontal floor acceleration for estimating nonstructural element vulnerability. In: Proc.13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada.

  146. Akhlaghi, H.; and Moghadam, A.S.: Height-Wise Distribution of Peak Horizontal Floor Acceleration (PHFA). In: Proc. The 14th World Conference on Earthquake Engineering, October 12–17, Beijing, China. (2008)

  147. U. B. C.: Uniform Building Code, volume 2: structural Engineering Design Provisions”, 3rd Printing, International Conference of Building Officials, USA. (1997)

  148. NEHRP: Recommended provisions for seismic regulations for new buildings, 2000 Edition. Building Seismic Safety Council, Washington, D.C. (2000)

    Google Scholar 

  149. International Building Code (IBC): Whittier, Calif. (2006)

  150. El-Attar, A.: Dynamic analysis of combined piled raft system. Ain Shams Eng. J. 12(2021), 2533–2547 (2021)

    Article  Google Scholar 

Download references