black-shale-deposition-during-the-paleocene–eocene-thermal-maximum:-shale-gas-potential-of-the-patala-formation-…-–-springer

Black shale deposition during the Paleocene–Eocene thermal maximum: shale-gas potential of the Patala Formation … – Springer

  • Afzal J, Williams M, Leng MJ, Aldridge RJ (2011a) Dynamic response of the shallow marine benthic ecosystem to regional and pan-Tethyan environmental change at the Paleocene-Eocene boundary. Palaeogeogr Palaeoclimatol Palaeoecol 309:141–160

    Article  Google Scholar 

  • Afzal J, Williams M, Leng MJ, Aldridge RJ, Stephenson MH (2011b) Evolution of Paleocene to Early Eocene larger benthic foraminifer assemblages of the Indus Basin, Pakistan. Lethaia 44:299–320

    Article  Google Scholar 

  • Agrawal S, Verma P, Rao MR, Garg R, Kapur VV, Bajpai S (2017) Lignite deposits of the Kutch Basin, western India: Carbon isotopic and palynological signatures of the early Eocene hyperthermal event ETM2. J Asian Earth Sci 146:296–303

    Article  Google Scholar 

  • Ali A, Matee U, Matloob H, Bhatti AS, Khaista R (2017) Estimation of the Shale Oil/Gas Potential of a Paleocene-Eocene Succession: A Case Study from the Meyal Area, Potwar Basin, Pakistan. Acta Geologica Sinica-English Edition 91:2180–2199

    Article  Google Scholar 

  • Asif M, Fazeelat T (2012) Petroleum geochemistry of the Potwar Basin, Pakistan: II–Oil classification based on heterocyclic and polycyclic aromatic hydrocarbons. Appl Geochem 27:1655–1665

    Article  CAS  Google Scholar 

  • Asif M, Fazeelat T, Jalees MI (2014) Biomarker and stable carbon isotopic study of Eocene sediments of North-Western Potwar Basin, Pakistan. J Petrol Sci Eng 122:729–740

    Article  CAS  Google Scholar 

  • Azami SH, Wagreich M, Mehrizi MM, Gharaie MHM, Gier S, Leckie RM (2021) Sedimentology and sediment geochemistry of the pelagic Paryab section (Zagros Mountains, Iran): implications for sea level fluctuations and paleoenvironments in the late Paleocene to middle Eocene. Arab J Geosci 14:1–16

    Article  Google Scholar 

  • Baudin F, Disnar JR, Aboussou A, Savignac F (2015) Guidelines for Rock-Eval analysis of recent marine sediments. Org Geochem 86:71–80

    Article  CAS  Google Scholar 

  • Béhar F, Beaumont V, De B, Penteado HL (2001) Rock-Eval 6 technology: performances and developments. Oil and Gas Science Technology 56:111–134

    Article  Google Scholar 

  • Bernard S, Horsfield B (2014) Thermal maturation of gas shale systems. Annu Rev Earth Planet Sci 42:635–651

    Article  CAS  Google Scholar 

  • Boucsein B, Stein R (2009) Black shale formation in the late Paleocene/early Eocene Arctic Ocean and paleoenvironmental conditions: New results from a detailed organic petrological study. Mar Pet Geol 26:416–426

    Article  CAS  Google Scholar 

  • Bouillon S, Raman AV, Dauby P, Dehairs F (2002) Carbon and nitrogen stable isotope ratios of subtidal benthic invertebrates in an estuarine mangrove ecosystem (Andhra Pradesh, India). Estuar Coast Shelf Sci 54:901–913

    Article  CAS  Google Scholar 

  • Burnaz L, Kalmykov A, Grohmann S, Kalmykov G, Littke R (2022) Geochemistry and organic petrology of organic-rich shales of the Upper Jurassic-Lower Cretaceous Bazhenov Horizon in the Frolov Region, West Siberian Basin: Implications for the reconstruction of the organic matter origin and paleoredox conditions. Mar Pet Geol 143:105809

    Article  CAS  Google Scholar 

  • Craddock PR, Bake KD, Pomerantz AE (2018) Chemical, molecular, and microstructural evolution of kerogen during thermal maturation: case study from the Woodford Shale of Oklahoma. Energy Fuels 32:4859–4872

    Article  CAS  Google Scholar 

  • Craig J, Hakhoo N, Bhat GM, Hafiz M, Khan MR, Misra R, Ahmed W (2018) Petroleum systems and hydrocarbon potential of the North-West Himalaya of India and Pakistan. Earth Sci Rev 187:109–185

    Article  Google Scholar 

  • Cui Y, Kump LR, Ridgwell AJ, Charles AJ, Junium CK, Diefendorf AF, Harding IC (2011) Slow release of fossil carbon during the Palaeocene-Eocene Thermal Maximum. Nat Geosci 4:481–485

    Article  CAS  Google Scholar 

  • Cunningham R, Phillips MP, Snedden JW, Norton IO, Lowery CM, Virdell JW, Avery A (2022) Productivity and organic carbon trends through the Wilcox Group in the deep Gulf of Mexico: Evidence for ventilation during the Paleocene–Eocene Thermal Maximum. Mar Pet Geol 140:105634

    Article  CAS  Google Scholar 

  • Curtis JB (2002) Fractured shale-gas systems. AAPG Bull 86:1921–1938

    CAS  Google Scholar 

  • de Souza ACB, do Nascimento Jr DR, Batezelli A, Nepomuceno Filho F, Oliveira KML, de Almeida NM, da Silva Barbosa TH, (2021) Geochemical constraints on the origin and distribution of Cretaceous source rocks in the Ceará basin, Brazilian Equatorial margin. J S Am Earth Sci 107:103092

    Article  CAS  Google Scholar 

  • Doubrawa M, Stassen P, Robinson MM, Babila TL, Zachos JC, Speijer RP (2022) Shelf Ecosystems Along the US Atlantic Coastal Plain Prior to and During the Paleocene‐Eocene Thermal Maximum: Insights Into the Stratigraphic Architecture. Paleoceanography and Paleoclimatology 37:e2022PA004475

  • Espitalié J, Laporte JL, Madec M, Marquis F, Leplat P, Paulet J, Boutefeu A (1977) Methode rapide de caract´erisation des roches m`etres, de leur potentiel p´etrolier et de leur degr´e d’´evolution. Rev Inst Fr Pet 32:23–42

    Article  Google Scholar 

  • Farouk S, Sen S, Ganguli SS, Ahmad F, Abioui M, Al-Kahtany K, Gupta P (2022) An integrated petrographical, petrophysical and organic geochemical characterization of the Lower Turonian Abu Roash-F carbonates, Abu Gharadig field, Egypt-Inferences on self-sourced unconventional reservoir potential. Mar Pet Geol 145:105885

    Article  CAS  Google Scholar 

  • Froidl F, Zieger L, Mahlstedt N, Littke R (2020) Comparison of single-and multi-ramp bulk kinetics for a natural maturity series of Westphalian coals: Implications for modelling petroleum generation. Int J Coal Geol 219:103378

    Article  CAS  Google Scholar 

  • Ghandour IM (2020) Paleoenvironmental changes across the Paleocene-Eocene boundary in West Central Sinai, Egypt: geochemical proxies. Swiss J Geosci 113:1–16

    Google Scholar 

  • Gross D, Sachsenhofer RF, Bechtel A, Pytlak L, Rupprecht B, Wegerer E (2015) Organic geochemistry of Mississippian shales (Bowland Shale Formation) in central Britain: Implications for depositional environment, source rock and gas shale potential. Mar Pet Geol 59:1–21

    Article  CAS  Google Scholar 

  • Gupta S, Kumar K (2019) Precursors of the Paleocene–Eocene Thermal Maximum (PETM) in the Subathu Group, NW sub-Himalaya, India. J Asian Earth Sci 169:21–46

    Article  Google Scholar 

  • Hanif M, Hart MB, Grimes ST, Leng MJ (2014) Integrated stratigraphy and palaeoenvironment of the P/E boundary interval, Rakhi Nala section, Indus Basin (Pakistan). Arab J Geosci 7:323–339

    Article  Google Scholar 

  • Hanif M, Sabba M, Ali N, Rahman MU, Ali F, Swati MAF (2021) A multi-proxy based high-resolution stratigraphical analysis of the possible Palaeocene-Eocene boundary interval, Salt Range, Pakistan. Geol J 56:434–456

    Article  Google Scholar 

  • Higgins JA, Schrag DP (2006) Beyond methane: towards a theory for the Paleocene–Eocene Thermal Maximum. Earth Planet Sci Lett 245:523–537

    Article  CAS  Google Scholar 

  • Homann M, Sansjofre P, Van Zuilen M, Heubeck C, Gong J, Killingsworth B, Lalonde SV (2018) Microbial life and biogeochemical cycling on land 3,220 million years ago. Nat Geosci 11:665–671

    Article  CAS  Google Scholar 

  • Hunt JM (1996) Petroleum Geochemistry and Geology. Freeman, San Francisco

    Google Scholar 

  • Hylland MD, Riaz M, Ahmad S (1988) Stratigraphy and structure of the southern Gandghar Range, Pakistan. Geol Bull Univ Peshawar 1:15–24

    Google Scholar 

  • Iqbal S, Wagreich M, Bibi M, Jan IU, Gier S (2021) Multi-proxy provenance analyses of the Kingriali and Datta formations (Triassic-Jurassic transition): evidence for westward extension of the Neo-Tethys passive margin from the Salt Range (Pakistan). Minerals 11(6):573

    Article  CAS  Google Scholar 

  • Jadoon QK, Roberts E, Blenkinsop T, Wust R (2016) Organic petrography and thermal maturity of the Permian Roseneath and Murteree shales in the Cooper Basin, Australia. Int J Coal Geol 154:240–256

    Article  Google Scholar 

  • Jalees MI, Fazeelat T (2020) Geochemical segregation of early Permian, Paleocene and Eocene sediments of Potwar Basin, Pakistan: I Geophysical and isotopic analysis for source and depositional environment. Carbonates Evaporites 35:1–14

    Article  Google Scholar 

  • Jarvie DM (2012) Shale resource systems for oil and gas: Part 1—Shale-gas resource systems. In: Breyer JA (ed) Shale reservoirs —Giant resources for the 21st century. AAPG Memoir, London

    Google Scholar 

  • Jarvie DM, Lundell LL (2001) Amount, type, and kinetics of thermal transformation of organic matter in the Miocene Monterey Formation. In: Isaacs CM, Rullkotter J (eds) The Monterey Formation: from Rocks to Molecules. Columbia University Press, Columbia

    Google Scholar 

  • Jenkyns HC (2010) Geochemistry of oceanic anoxic events. Geochem Geophys Geosyst 11:1–30

    Article  Google Scholar 

  • Jiang J, Hu X, Li J, BouDagher-Fadel M, Garzanti E (2021) Discovery of the Paleocene–Eocene Thermal Maximum in shallow-marine sediments of the Xigaze forearc basin, Tibet: A record of enhanced extreme precipitation and siliciclastic sediment flux. Palaeogeogr Palaeoclimatol Palaeoecol 562:110095

    Article  Google Scholar 

  • Kendall CGSC, Chiarenzelli J, Hassan HS (2009) World source rock potential through geological time: A function of basin restriction, nutrient level, sedimentation rate, and sea-level rise. AAPG Annual Convention, Denver

    Google Scholar 

  • Kennett JP, Stott LD (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353:225–229

    Article  Google Scholar 

  • Khan N, Anjum N, Ahmad M, Awais M, Ullah N (2018) Hydrocarbon source rock potential evaluation of the Late Paleocene Patala Formation, Salt Range, Pakistan: Organic geochemical and palynofacies approach. J Earth Syst Sci 127:1–18

    Article  CAS  Google Scholar 

  • Khan HK, Ehsan M, Ali A, Amer MA, Aziz H, Khan A, Abioui M (2022a) Source rock geochemical assessment and estimation of TOC using well logs and geochemical data of Talhar Shale, Southern Indus Basin. Pakistan Frontiers in Earth Science 10:969936

    Article  Google Scholar 

  • Khan N, Weltje GJ, Jan IU, Swennen R (2022b) Depositional and diagenetic constraints on the quality of shale-gas reservoirs: A case study from the Late Palaeocene of the Potwar Basin (Pakistan, Eastern Tethys). Geol J 57:2770–2787

    Article  Google Scholar 

  • Kobek MLP, Ugarte A, Aguilar GC (2015) Shale-gas in the United States: Transforming Energy Security in the Twenty-first Century. Norteamérica 10:7–38

    Article  Google Scholar 

  • Krzyżak AT, Habina-Skrzyniarz I, Machowski G, Mazur W (2020) Overcoming the barriers to the exploration of nanoporous shales porosity. Microporous Mesoporous Mater 298:110003

    Article  Google Scholar 

  • Lazar OR, Bohacs KM, Macquaker JH, Schieber J, Demko TM (2015) Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: nomenclature and description guidelines. J Sediment Res 85:230–246

    Article  CAS  Google Scholar 

  • Littke R, Klussmann U, Krooss B, Leythaeuser D (1991) Quantification of loss of calcite, pyrite, and organic matter due to weathering of Toarcian black shales and effects on kerogen and bitumen characteristics. Geochim Cosmochim Acta 55:3369–3378

    Article  CAS  Google Scholar 

  • Majumdar D, Chetia BK (2015) Source rock evaluation of PETM generated Disang Shales occurring in parts of Arunachal Pradesh, NE India. J Appl Geochem 17:1–9

    Google Scholar 

  • McInerney FA, Wing SL (2011) The Paleocene–Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu Rev Earth Planet Sci 39:489–516

    Article  CAS  Google Scholar 

  • Milkov AV, Faiz M, Etiope G (2020) Geochemistry of shale-gases from around the world: Composition, origins, isotope reversals and rollovers, and implications for the exploration of shale plays. Org Geochem 143:103997

    Article  CAS  Google Scholar 

  • Mohseni H, Behbahani R, Khodabakhsh S, Atashmard Z (2011) Depositional environments and trace fossil assemblages in the Pabdeh Formation (Paleogene), Zagros Basin. Iran Neues Jahrbuch Für Geologie und Paläontologie-Abhandlungen 262:59–77

    Article  Google Scholar 

  • Moore E, Kurtz AC (2008) Black carbon in Paleocene-Eocene boundary sediments: a test of biomass combustion as the PETM trigger. Palaeogeogr Palaeoclimatol Palaeoecol 267:147–152

    Article  Google Scholar 

  • Moore SA, Birgenheier LP, Greb MD, Minisini D, Tunik M, Omarini J (2020) Facies heterogeneity and source potential of carbonate-mudstone-dominated distal ramp deposits, Agrio Formation, Neuquén Basin, Argentina. J Sediment Res 90:533–570

    Article  CAS  Google Scholar 

  • Neville LA, McNeil DH, Grasby SE, Ardakani OH, Sanei H (2017) Late Paleocene – middle Eocene hydrocarbon source rock potential in the Arctic Beaufort-Mackenzie Basin. Mar Pet Geol 86:1082–1091

    Article  CAS  Google Scholar 

  • Qiao J, Baniasad A, Zieger L, Zhang C, Luo Q, Littke R (2020) Paleo-depositional environment, origin and characteristics of OM of the Triassic Chang 7 Member of the Yanchang Formation throughout the mid-western part of the Ordos Basin. China International Journal of Coal Geology 237:103636

    Article  Google Scholar 

  • Robinson SA (2011) Shallow-water carbonate record of the Paleocene–Eocene Thermal Maximum from a Pacific Ocean guyot. Geology 39:51–54

    Article  CAS  Google Scholar 

  • Röth J, Baniasad A, Froidl F, Ostlender J, Boreham C, Hall L, Littke R (2023) The Birkhead and Murta formations-organic geochemistry and organic petrography of Mesozoic fluvio-lacustrine source rocks in the Eromanga Basin, central Australia. Int J Earth Sci 112:265–295

    Article  Google Scholar 

  • Sachse VF, Littke R, Jabour H, Schümann T, Kluth O (2012) Late Cretaceous (late Turonian, Coniacian and Santonian) petroleum source rocks as part of an OAE, Tarfaya Basin, Morocco. Mar Pet Geol 29:35–49

    Article  CAS  Google Scholar 

  • Schulte P, Scheibner C, Speijer RP (2011) Fluvial discharge and sea-level changes controlling black shale deposition during the Paleocene–Eocene Thermal Maximum in the Dababiya Quarry section. Egypt Chemical Geology 285:167–183

    Article  CAS  Google Scholar 

  • Schulte P, Schwark L, Stassen P, Kouwenhoven TJ, Bornemann A, Speijer RP (2013) Black shale formation during the Latest Danian Event and the Paleocene–Eocene Thermal Maximum in central Egypt: Two of a kind? Palaeogeogr Palaeoclimatol Palaeoecol 371:9–25

    Article  Google Scholar 

  • Shah SMI (2009) Stratigraphy of Pakistan; Memoir Geological Survey of Pakistan; Ministry of Petroleum and Natural Resources of Geological Survey of Pakistan. Karachi 22:240–256

    Google Scholar 

  • Shah SBA, Shah SHA, Jamshed K (2022) An integrated palynofacies, geochemical and petrophysical analysis for characterizing mixed organic-rich carbonate and shale rocks of Dhulian oilfield Potwar Basin, Pakistan: Insights for multiple source and reservoir rocks evaluation. Geoenergy Science and Engineering 221:111236

    Article  Google Scholar 

  • Shu Y, Lu Y, Hu Q, Wang C, Wang Q (2021) Geochemical, petrographic and reservoir characteristics of the transgressive systems tract of lower Silurian black shale in Jiaoshiba area, southwest China. Mar Pet Geol 129:105014

    Article  CAS  Google Scholar 

  • Socorro J, Maurrasse FM (2019) Continuous accumulation of OM-rich sediments associated with Oceanic Anoxic Event 1a in the El Pujal section, Organyà Basin, Catalunyà Spain and its relation to episodic dysoxia. Cretac Res 95:225–251

    Article  Google Scholar 

  • Song J, Littke R, Weniger P, Ostertag-Henning C, Nelskamp S (2015) Shale oil potential and thermal maturity of the Lower Toarcian Posidonia Shale in NW Europe. Int J Coal Geol 150:127–153

    Article  Google Scholar 

  • Speijer R, Wagner T (2002) Sea-level changes and black shales associated with the late Paleocene thermal maximum: Organic-geochemical and micropaleontologic evidence from the southern Tethyan margin (Egypt-Israel). Catastrophic Events and Mass Extinctions: Impacts and beyond 356:533–549

    Google Scholar 

  • Tabatabaei H (2017) Potential evaluation and basin modeling of the pabdeh formation in zagros basin: a case study. Open Journal of Geology 7:505–516

    Article  CAS  Google Scholar 

  • Uffmann AK, Littke R, Rippen D (2012) Mineralogy and geochemistry of Mississippian and Lower Pennsylvanian black shales at the northern margin of the Variscan Mountain Belt (Germany and Belgium). Int J Coal Geol 103:92–108

    Article  CAS  Google Scholar 

  • Uveges BT, Junium CK, Boyer DL, Cohen PA, Day JE (2019) Biogeochemical controls on black shale deposition during the Frasnian-Famennian biotic crisis in the Illinois and Appalachian Basins, USA, inferred from stable isotopes of nitrogen and carbon. Palaeogeogr Palaeoclimatol Palaeoecol 531:108787

    Article  Google Scholar 

  • Vandenbroucke M, Largeau C (2007) Kerogen origin, evolution and structure. Org Geochem 38:719–833

    Article  CAS  Google Scholar 

  • Wandrey CJ, Law BE, Shah HA (2004) Patala-Nammal composite total petroleum system. US Department of the Interior, Reston

    Google Scholar 

  • Wang S, Zhao W, Zou C, Dong D, Wang Y, Li X, Guan Q (2015) Organic carbon and stable CO isotopic study of the Lower Silurian Longmaxi Formation black shales in Sichuan Basin, SW China: Paleoenvironmental and shale gas implications. Energy Explor Exploit 33:439–457

    Article  CAS  Google Scholar 

  • Warwick PD, Shakoor T (1993) Lithofacies and depositional environments of the coal-bearing Paleocene Patala Formation. Salt Range coal field, Pakistan

    Google Scholar 

  • Wei W, Swennen R (2022) Sedimentology and lithofacies of organic-rich Namurian Shale, Namur Synclinorium and Campine Basin (Belgium and S-Netherlands). Mar Pet Geol 138:105553

    Article  CAS  Google Scholar 

  • Wei W, Littke R, Swennen R (2023) Geochemical study of Mississippian to Pennsylvanian Namurian Shale in the Namur Synclinorium and Campine Basin (Belgium and S-Netherlands): Implication for paleo-redox reconstruction and organic matter characteristics. Int J Coal Geol 265:104150

    Article  CAS  Google Scholar 

  • Wesenlund F, Grundvåg SA, Engelschiøn VS, Thießen O, Pedersen JH (2021) Linking facies variations, organic carbon richness and bulk bitumen content–A case study of the organic-rich Middle Triassic shales from eastern Svalbard. Mar Pet Geol 132:105168

    Article  CAS  Google Scholar 

  • Xie X, Li M, Littke R, Huang Z, Ma X, Jiang Q, Snowdon LR (2016) Petrographic and geochemical characterization of microfacies in a lacustrine shale oil system in the Dongying Sag, Jiyang Depression, Bohai Bay Basin, eastern China. Int J Coal Geol 165:49–63

    Article  CAS  Google Scholar 

  • Zhang Q, Wendler I, Xu X, Willems H, Ding L (2017) Structure and magnitude of the carbon isotope excursion during the Paleocene–Eocene Thermal Maximum. Gondwana Res 46:114–123

    Article  CAS  Google Scholar 

  • Zhang L, Zeng X, Zhu W, Yuan L, Cai J (2022) Influence of Provenance and the Sedimentary Environment on the Formation of High-Quality Source Rocks in the Paleocene Lishui Sag, China. ACS Omega 7:5791–5803

    Article  CAS  Google Scholar 

  • Zheng T, Zieger L, Baniasad A, Grohmann S, Hu T, Littke R (2022) The Shahejie Formation in the Dongpu Depression, Bohai Bay Basin, China: Geochemical investigation of the origin, deposition and preservation of organic matter in a saline lacustrine environment during the Middle Eocene. Int J Coal Geol 253:103967

    Article  CAS  Google Scholar 

  • Zieger L, Littke R (2019) Bolsovian (Pennsylvanian) tropical peat depositional environments: the example of the Ruhr Basin. Germany International Journal of Coal Geology 211:103209

    Article  CAS  Google Scholar 

  • Zieger L, Littke R, Schwarzbauer J (2018) Chemical and structural changes in vitrinites and megaspores from Carboniferous coals during maturation. Int J Coal Geol 185:91–102

    Article  CAS  Google Scholar