References
-
Ahmady-Birgani, H., Mirnejad, H., Feiznia, S., & McQueen, K. G. (2015). Mineralogy and geochemistry of atmospheric particulates in western Iran. Atmospheric Environment, 119, 262–272. https://doi.org/10.1016/j.atmosenv.2015.08.021
-
Allen, M. D., & Raabe, O. G. (1985). Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus. Aerosol Science and Technology, 4(3), 269–286. https://doi.org/10.1080/02786828508959055
-
Arffman, A., Marjamäki, M., & Keskinen, J. (2011). Simulation of low pressure impactor collection efficiency curves. Journal of Aerosol Science, 42(5), 329–340. https://doi.org/10.1016/j.jaerosci.2011.02.006
-
Arffman, A., Yli-Ojanperä, J., & Keskinen, J. (2012). The influence of nozzle throat length on the resolution of a low pressure impactor-An experimental and numerical study. Journal of Aerosol Science, 53, 76–84. https://doi.org/10.1016/j.jaerosci.2012.06.002
-
Cao, J. (2017). The importance of aerosols in the earth system: Science and engineering perspectives. Aerosol Science and Engineering, 1, 1–6. https://doi.org/10.1007/s41810-017-0005-1
-
Cheon, T. W., Lee, J. Y., Bae, J. Y., & Yook, S. J. (2017). Enhancement of collection efficiency of an inertial impactor using an additional punched impaction plate. Aerosol and Air Quality Research, 17(10), 2349–2357. https://doi.org/10.4209/aaqr.2017.01.0018
-
Cornette, J. F. P., Blondeau, J., & Bram, S. (2023). Influence of the dynamic behaviour of impactor surfaces on particulate matter emission measurements with electrical low pressure impactors. Powder Technology, 419, 118333. https://doi.org/10.1016/J.POWTEC.2023.118333
-
DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., & Jimenez, J. L. (2004). Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Science and Technology, 38(12), 1185–1205. https://doi.org/10.1080/027868290903907
-
García-Ruiz, E., Romay, F. J., García, J. A., Cambra, J. F., Alonso, L., & Legarreta, J. A. (2019). Effect of nozzle spacing in the formation of primary and secondary deposits in multi-nozzle inertial impactors part I: Experimental study. Journal of Aerosol Science, 136, 61–81. https://doi.org/10.1016/j.jaerosci.2019.06.008
-
García-Ruiz, E., Romay, F. J., Gracía, J. A., Iza, J. M., Cambra, J. F., Gangoiti, G., & Legarreta, J. A. (2019). Effect of nozzle spacing in the formation of primary and secondary deposits in multi-nozzle inertial impactors part II: Numerical study. Journal of Aerosol Science, 136, 106–127. https://doi.org/10.1016/j.jaerosci.2019.06.009
-
Comde-Derenda GmbH. (2017). Environmental monitoring systems: Low-/ medium-volume sampler for collecting particulate matter PM10 / PM2.5 / PM1Types: LVS 3.1 / MVS 6.1. www.comde-derenda.de
-
Haider, A., & Levenspiel, O. (1989). Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technology, 58, 63–70. https://doi.org/10.1016/0032-5910(89)80008-7
-
Hinds, W. C. (1999). Aerosol technology_ Properties, behavior, and measurement of airborne particles (second). Wiley-Interscience.
-
Huang, C. H., & Tsai, C. J. (2001). Effect of gravity on particle collection efficiency of inertial impactors. Journal of Aerosol Science, 32(3), 375–387. https://doi.org/10.1016/S0021-8502(00)00086-0
-
Kala, S., & Saylor, J. R. (2022). Factors affecting the diameter of ring-shaped deposition patterns in inertial impactors having small S/W ratios. Aerosol Science and Technology, 56(3), 234–246. https://doi.org/10.1080/02786826.2021.2007214
-
Kharoua, N., AlShehhi, M., & Khezzar, L. (2015). Prediction of Black Powder distribution in junctions using the Discrete Phase Model. Powder Technology, 286, 202–211. https://doi.org/10.1016/j.powtec.2015.07.045
-
Kim, Y. J., & Yook, S. J. (2011). Enhancement of collection efficiency of inertial impactors using elliptical concave impaction plates. Journal of Aerosol Science, 42(12), 898–908. https://doi.org/10.1016/j.jaerosci.2011.08.006
-
Kim, W. G., Yook, S. J., & Ahn, K. H. (2013). Collection efficiency of rectangular slit-nozzle inertial impactors with impaction plates of elliptical concave curvature. Aerosol Science and Technology, 47(1), 99–105. https://doi.org/10.1080/02786826.2012.730162
-
Kim, M. K., Kim, W. G., Lee, K. S., & Yook, S. J. (2014). Collection efficiency of round-nozzle impactors with horizontal annular inlet. Journal of Aerosol Science, 74, 63–69. https://doi.org/10.1016/j.jaerosci.2014.04.007
-
Kwak, D. bin, Kim, S. C., Lee, H., & Pui, D. Y. H. (2021). Numerical investigation of nanoparticle deposition location and pattern on a sharp-bent tube wall. International Journal of Heat and Mass Transfer, 164. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120534
-
Kwon, S. B., Kim, M. C., & Lee, K. W. (2002). Effects of jet configuration on the performance of multi-nozzle impactors. Journal of Aerosol Science, 33(6), 859–869. https://doi.org/10.1016/S0021-8502(02)00040-X
-
Le, T. C., Lin, C. H., Gong, W. C., Ždímal, V., Pui, D. Y. H., & Tsai, C. J. (2022). Novel inertial impactor for nanoparticle classification without particle loading effect. Journal of Aerosol Science, 159, 105879. https://doi.org/10.1016/J.JAEROSCI.2021.105879
-
Lee, S. J., Demokritou, P., & Koutrakis, P. (2005). Performance evaluation of commonly used impaction substrates under various loading conditions. Journal of Aerosol Science, 36(7), 881–895. https://doi.org/10.1016/j.jaerosci.2004.11.006
-
Mahmoudi, M., Tavakoli, M. R., & Salehi, A. (2017). Numerical study of low Reynolds inertial impactors with elliptical impaction plate. Journal of Aerosol Science, 105, 94–107. https://doi.org/10.1016/j.jaerosci.2016.11.016
-
Marple, V. A. (2004). History of impactors – the first 110 years. Aerosol Science and Technology, 38(3), 247–292. https://doi.org/10.1080/02786820490424347
-
Marple, V. A., & Willeke, K. (1976). Impactor design. Atmospheric Environment (1967), 10(10), 891–896. https://doi.org/10.1016/0004-6981(76)90144-X
-
Morsi, S. A., & Alexander, A. J. (1972). An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, 55(2), 193–208. https://doi.org/10.1017/S0022112072001806
-
Mottaghi, P., Abbasalizadeh, M., & Ahmady-Birgani, H. (2019). Depositional arrangement of non-spherical atmospheric particles on impaction plate of a multi-nozzle impactor. Aerosol Science and Technology, 53(12), 1381–1392. https://doi.org/10.1080/02786826.2019.1665622
-
Park, C. W., Kim, G., Yook, S. J., & Ahn, K. H. (2015). Investigation of collection efficiency of round-nozzle impactors at different atmospheric pressures and temperatures. Advanced Powder Technology, 26(3), 868–873. https://doi.org/10.1016/j.apt.2015.02.014
-
Rocklage, J. M., Marple, V. A., & Olson, B. A. (2013). Study of secondary deposits in multiple round nozzle impactors. Aerosol Science and Technology, 47(10), 1144–1151. https://doi.org/10.1080/02786826.2013.823641
-
Ruzer, L. S., & Harley, N. H. (2005). Aerosols handbook: Measurement, dosimetry, and health effects. CRC Press.
-
Tsai, C. J., & Cheng, Y. H. (1995). Solid particle collection characteristics on impaction surfaces of different designs. Aerosol Science and Technology, 23(1), 96–106. https://doi.org/10.1080/02786829508965297
-
Vinchurkar, S., Longest, P. W., & Peart, J. (2009). CFD simulations of the Andersen cascade impactor: Model development and effects of aerosol charge. Journal of Aerosol Science, 40(9), 807–822. https://doi.org/10.1016/j.jaerosci.2009.05.005
-
Zahir, M. Z., Heo, J. E., & Yook, S. J. (2019). Influence of clean air and inlet configuration on the performance of slit nozzle virtual impactor. Advanced Powder Technology, 30(12), 3224–3230. https://doi.org/10.1016/j.apt.2019.09.031