study-of-oxidation-of-cellulose-by-fenton-type-reactions-using-alkali-metal-salts-as-swelling-agents-|-cellulose-–-springer

Study of oxidation of cellulose by Fenton-type reactions using alkali metal salts as swelling agents | Cellulose – Springer

  • Abdul Rahman NH, Chieng BW, Ibrahim NA, Abdul Rahman N (2017) Extraction and characterization of cellulose nanocrystals from tea leaf waste fibers. Polymers 9(11):588. https://doi.org/10.3390/polym9110588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed MJ, Dhedan SK (2012) Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilib 317:9–14. https://doi.org/10.1016/j.fluid.2011.12.026

  • Ahn K, Zaccaron S, Zwirchmayr NS, Hettegger H, Bacher M, Potthast A, Hosoya T (2019) Yellowing and brightness reversion of celluloses: CO or COOH, who is the culprit? Cellulose 26:429–444. https://doi.org/10.1007/s10570-018-2200-x

    Article  CAS  Google Scholar 

  • Alam MN, Islam MS, Christopher LP (2019) Sustainable production of cellulose-based hydrogels with superb absorbing potential in physiological saline. ACS Omega 4(5):9419–9426. https://doi.org/10.1021/acsomega.9b00651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assonfack HL, Yona Cheumani AM, Ndinteh D, Lembe JT, Nga JB, Ndikontar MK (2023) Preparation and Characterisation of Cellulose by Delignification of Eteng (Ceiba pentandra) Wood in Formic Acid-Acetic Acid-Water Solvent Mixtures. J Polym Environ 31(3):913–921. https://doi.org/10.1007/s10924-022-02641-9

    Article  CAS  Google Scholar 

  • ASTM D. 2654–76 (1976) Moisture content and moisture regain of textiles. Nimonk Document Center. https://www.document-center.com/standards/show/ASTM-D2654/. Accessed 10 Mar 2023

  • Barud HS, de Araújo Júnior AM, Santos DB, de Assunção RM, Meireles CS, Cerqueira DA, Ribeiro SJ (2008) Thermal behaviour of cellulose acetate produced from homogeneous acetylation of cellulose. Thermochim Acta 471(1–2):61–69. https://doi.org/10.1016/j.tca.2008.02.009

    Article  CAS  Google Scholar 

  • Bataineh H, Oleg P, Andreja B (2012) pH-induced mechanistic changeover from hydroxy radicals to iron (IV) in the Fenton reaction. Chem Sci 3:1594–1599. https://doi.org/10.1039/C2SC20099F

    Article  CAS  Google Scholar 

  • Benghanem S, Chetouani A, Elkolli M, Bounekhel M, Benachour D (2017) Grafting of oxidized carboxymethyl cellulose with hydrogen peroxide in presence of Cu (II) to chitosan and biological elucidation. Biocybernetics Biomed Eng 37(1):94–102. https://doi.org/10.1016/j.bbe.2016.09.003

    Article  Google Scholar 

  • Calderón-Vergara LA, Ovalle-Serrano SA, Blanco-Tirado C, Combariza MY (2020) Influence of post-oxidation reactions on the physicochemical properties of TEMPO-oxidized cellulose nanofibers before and after amidation. Cellulose 27:1273–1288. https://doi.org/10.1007/s10570-019-02849-4

    Article  CAS  Google Scholar 

  • Chen Y, Yu HY, Li Y (2020) Highly efficient and superfast cellulose dissolution by green chloride salts and its dissolution mechanism. ACS Sustainable Chemistry & Engineering 8(50):18446–18454. https://doi.org/10.1021/acssuschemeng.0c05788

    Article  CAS  Google Scholar 

  • Chimeni DY, Toupe JL, Dubois C, Rodrigue D (2016) Effect of hemp surface modification on the morphological and tensile properties of linear medium density polyethylene (LMDPE) composite. Compos Interface 23(5):405–421. https://doi.org/10.1080/09276440.2016.1144163

    Article  CAS  Google Scholar 

  • Coserin S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Harabagiu V (2013) Oxidized cellulose Survey of the most recent achievements. Carbohyd Polym 93(1):207–215. https://doi.org/10.1016/j.carbpol.2012.03.086

    Article  CAS  Google Scholar 

  • Costa L A, Fonseca A F, Pereira FV, Druzian JI (2015) Extraction and characterization of cellulose nanocrystals from corn stover. Cell Chemical Technology, 49(2): 127–133. https://cellulosechemtechnol.ro/pdf/CCT2 (2015)/p.127–133.pdf.

  • Del Cerro DR, Koso TV, Kakko T, King AW, Kilpelainen I (2020) Crystalllinity reduction and enhancement in the chemical reactivity of cellulose by non-dissolving pre-treatment with tetrabutylphosphonium acetate. Cellulose 27:5545–5562. https://doi.org/10.1007/s10570-020-03044-6

    Article  CAS  Google Scholar 

  • Duan L, Liu R, Li Q (2020) A more efficient Fenton oxidation method with high shear mixing for the preparation of cellulose nanofibers. Starch-Stärke 72(11–12):1900259. https://doi.org/10.1002/star.201900259

    Article  CAS  Google Scholar 

  • Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohyd Polym 80(3):852–859. https://doi.org/10.1016/j.carbpol.2009.12.043

    Article  CAS  Google Scholar 

  • French AD (2017) Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24:4605–4609. https://doi.org/10.1007/s10570-017-1450-3

    Article  CAS  Google Scholar 

  • Guay DF, Cole BJW, Fort RC Jr, Hausman MC, Genco JM, Elder TJ, Overly KR (2001) Mechanisms of oxidative degradation of carbohydrates during oxygen delignification. II. Reaction of photochemically generated hydroxy radicals with methyl β-cellobioside. J Wood Chem Technol 21(1):67–79. https://doi.org/10.1081/WCT-100102655

    Article  CAS  Google Scholar 

  • Hellström P, Heijnesson-Hultén A, Paulsson M, Håkansson H, Germgård U (2014) The effect of Fenton chemistry on the properties of microfibrillated cellulose. Cellulose 21(3):1489–1503. https://doi.org/10.1007/s10570-014-0243-1

    Article  CAS  Google Scholar 

  • Hosoya T, Bacher M, Potthast A, Elder T, Rosenau T (2018) Insights into degradation pathways of oxidized anhydroglucose units in cellulose by β-alkoxy-elimination: a combined theoretical and experimental approach. Cellulose 25:3797–3814. https://doi.org/10.1007/s10570-018-1835-y

    Article  CAS  Google Scholar 

  • Hou QX, Liu W, Liu ZH, Bai LL (2007) Characteristics of wood cellulose fibers treated with periodate and bisulfite. Ind Eng Chem Res 46(23):7830–7837. https://doi.org/10.1021/ie0704750

    Article  CAS  Google Scholar 

  • Huang P, Zhao Y, Kuga S, Wu M, Huang Y (2016) A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 8(6):3753–3759. https://doi.org/10.1039/C5NR08179C

    Article  CAS  PubMed  Google Scholar 

  • Huntley CJ, Crews KD, Curry ML (2015) Chemical functionalization and characterization of cellulose extracted from wheat straw using acid hydrolysis methodologies. Int J Polymer Sci 2015:1–9. https://doi.org/10.1155/2015/293981

    Article  CAS  Google Scholar 

  • Ismail H, Iran M, Ahmad Z (2013) Starch-based hydrogels: present status and applications. Int J Polym Mater Polym Biomater 62(7):411–420. https://doi.org/10.1080/00914037.2012.719141

    Article  CAS  Google Scholar 

  • Jung YS, Lim WT, Park JY, Kim YH (2009) Effect of pH on Fenton and Fenton-like oxidation. Environ Technol 30(2):183–190. https://doi.org/10.1080/09593330802468848

    Article  CAS  PubMed  Google Scholar 

  • Kim UJ, Kuga S, Wada M, Kondo OT, T, (2000) Periodate oxidation of crystalline cellulose. Biomacromol 1(3):488–492. https://doi.org/10.1021/bm0000337

    Article  CAS  Google Scholar 

  • Kommula VP, Reddy KO, Shukla M, Marwala T, Reddy ES, Rajulu AV (2016) Extraction, modification, and characterization of natural ligno-cellulosic fibbers strands from napier grass. Int J Polym Anal Charact 21(1):18–28. https://doi.org/10.1080/1023666X.2015.1089650

    Article  CAS  Google Scholar 

  • Korntner P, Hosoya T, Dietz T,  Eibinger K, Reiter H, Spitzbart M, Röder T, Borgards A, Kreiner W, Mahler A K, Winter H, Groiss Y, French A D, Henniges U, Potthast A, Rosenau T (2015) Chromophores in lignin-free cellulosic materials belong to three compound classes. Chromophores in cellulosics, XII. Cellulose 22:1053–1062. https://doi.org/10.1007/s10570-015-0566-6

  • Kristiansen KA, Potthast A, Christensen BE (2010) Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohyd Res 345(10):1264–1271. https://doi.org/10.1016/j.carres.2010.02.011

    Article  CAS  Google Scholar 

  • Li Q, Wang A, Long K, He Z, Cha R (2018) Modified Fenton oxidation of cellulose fibers for cellulose nanofibrils preparation. ACS Sustain Chem Eng 7(1):1129–1136. https://doi.org/10.1021/acssuschemeng.8b04786

    Article  CAS  Google Scholar 

  • Liu R, Li Q, Liu J, Duan Y, Gao T (2021) Graft copolymerization of MA/ (TFEA or TFPM) onto cellulosic fibers for surface hydrophobicity. Cellulose 28(7):3981–3995. https://doi.org/10.1007/s10570-021-03773-2

    Article  CAS  Google Scholar 

  • Lu Y, Kong QM, Jing R, Hu X, Zhu PX (2013) Solid state oxidation of polyvinyl alcohol by hydrogen peroxide-Cu (II). Polym Degrad Stab 98(6):1103–1109. https://doi.org/10.1016/j.polymdegradstab.2013.03.022

    Article  CAS  Google Scholar 

  • Luo Y, Jianxiong Z, Xi L, Chunrong L, Xianjun L (2014) The Cellulose Nanofibers for Optoelectronic Conversion and Energy Storag. J Nanomater 2014:11–11. https://doi.org/10.1155/2014/654512

    Article  CAS  Google Scholar 

  • Martins LR, Rodrigues JAV, Adarme OFH, Melo TMS, Gurgel LVA, Gil LF (2017) Optimization of cellulose and sugarcane bagasse oxidation: application for adsorptive removal of crystal violet and auramine-O from aqueous solution. J Colloid Interface Sci 494:223–241. https://doi.org/10.1016/j.jcis.2017.01.085

    Article  CAS  PubMed  Google Scholar 

  • Miller CJ, Rose AL, Waite TD (2016) Importance of Iron Complexation for Fenton-Mediated Hydroxy Radical Production at Circumneutral pH. Front Mar Sci 3:134. https://doi.org/10.3389/fmars.2016.00134

    Article  Google Scholar 

  • Millero FJ, Sharma VK, Karn B (1991) The rate of reduction of copper (II) with hydrogen peroxide in seawater. Mar Chem 36(1–4):71–83. https://doi.org/10.1016/S0304-4203(09)90055-X

    Article  CAS  Google Scholar 

  • Nypelö T, Barbara B, Stefan S, Juho AS (2021) Periodate oxidation of wood polysaccharides-Modulation of hierarchies. Carbohyd Polym 252:117105. https://doi.org/10.1016/j.carbpol.2020.117105

    Article  CAS  Google Scholar 

  • Ovalle R (2022) History of the Fenton reactions (Fenton chemistry for beginners). React Oxygen Species. IntechOpen 1. Available from: https://doi.org/10.5772/intechopen.99846

  • Pang Z, Dong C, Pan X (2016) Enhanced deconstruction and dissolution of lignocellulosic biomass in ionic liquid at high water content by lithium chloride. Cellulose 23:323–338. https://doi.org/10.1007/s10570-015-0832-7

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and the impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  Google Scholar 

  • Pham AN, Xing G, Miller CJ, Waite TD (2013) Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J Catal 301:54–64. https://doi.org/10.1016/j.jcat.2013.01.025

    Article  CAS  Google Scholar 

  • Plappert SF, Quraishi S, Pircher N, Mikkonen KS, Veigel S, Klinger KM, Potthast A, Rosenau T, Liebner FW (2018) Transparent, Flexible, and Strong 2,3-Dialdehyde Cellulose Films with High Oxygen Barrier Properties. Biomacromol 19(7):2969–2978. https://doi.org/10.1021/acs.biomac.8b00536

    Article  CAS  Google Scholar 

  • Potthast A, Kostic M, Schiehser S, Kosma P, Rosenau T (2007) Studies on oxidative modifications of cellulose in the periodate system: Molecular weight distribution and carbonyl group profiles. Wood Res Technol 61:662–667. https://doi.org/10.1515/HF.2007.099

    Article  CAS  Google Scholar 

  • Praskalo J, Kostic M, Potthast A, Popov G, Pejic B, Skundric P (2009) Sorption properties of TEMPO-oxidized natural and man-made cellulose fibers. Carbohyd Polym 77(4):791–798. https://doi.org/10.1016/j.carbpol.2009.02.028

    Article  CAS  Google Scholar 

  • Qin CQ, Du YM, Xiao L (2002) Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan. Polym Degrad Stab 76(2):211–218. https://doi.org/10.1016/S0141-3910(02)00016-2

    Article  CAS  Google Scholar 

  • Qun L, Wang A, Long K, He Z, Cha R (2018) Modified Fenton oxidation of cellulose fibers for cellulose nanofibrils preparation. ACS Sustainable Chemistry Amp; Engineering, 7(1), 1129–1136. https://doi.org/10.1021/acssuschemeng.8b04786

  • Rodríguez A, Sánchez R, Requejo A, Ferrer A (2010) Feasibility of rice straw as a raw material for the production of soda cellulose pulp. J Clean Prod 18(10–11):1084–1091. https://doi.org/10.1016/j.jclepro.2010.03.011

    Article  CAS  Google Scholar 

  • Ruan CQ, Strømme M, Mihranyan A, Lindh J (2017) Favored surface-limited oxidation of cellulose with Oxone® in water. RSC Adv 7(64):40600–40607. https://doi.org/10.1039/C7RA06141B

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf, A 289(1–3):219–225

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8(8):2485–2491. https://doi.org/10.1021/bm0703970

    Article  CAS  Google Scholar 

  • Sango T, Yona AMC, Duchatel L, Marin A, Ndikontar M, Joly N, Lefebvre JM (2018) Step–wise multi–scale deconstruction of banana pseudo–stem (Musa acuminata) biomass and morpho–mechanical characterization of extracted long fibres for sustainable applications. Industrial Crops and Product 122:657–668. https://doi.org/10.1016/j.indcrop.2018.06.050

    Article  CAS  Google Scholar 

  • Segal LG, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  • Shaker AM, El-Khatib RM, Nasser LAME (2009) Further mechanistic orientation for the oxidation reaction between alkaline permanganate and poly galacturonate methyl ester Novel spectrophotometric tracer of intrahypomanganate (V)–Intermediate. Carbohydrate Polymers 78(4):710–716. https://doi.org/10.1016/j.carbpol.2009.06.007

    Article  CAS  Google Scholar 

  • Siller M, Amer H, Bacher M, Roggenstein W, Rosenau T, Potthast A (2015) Effects of periodates oxidation on cellulose polymorphs. Cellulose 22(4):2245–2261. https://doi.org/10.1007/s10570-015-0648-5

    Article  CAS  Google Scholar 

  • Simon J, Otgontuul T, Nohman AI, Janak S, Matti R, Thomas R, Antje P (2022) A fast method to measure the degree of oxidation of dialdehyde celluloses using multivariate calibration and infrared spectroscopy. Carbohyd Polym 278:118887. https://doi.org/10.1016/j.carbpol.2021.118887

    Article  CAS  Google Scholar 

  • Simpson R, Ramírez C, Nuñez H, Jaques A, Almonacid S (2017) Understanding the success of Page’s model and related empirical equations in fitting experimental data of diffusion phenomena in food matrices. Trends Food Sci Technol 62:194–201. https://doi.org/10.1016/j.tifs.2017.01.003

    Article  CAS  Google Scholar 

  • Sirvio J, Hyvakko U, Liimatainen H, Niinimaki J, Hormi O (2011) Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohyd Polym 83(3):1293–1297. https://doi.org/10.1016/j.carbpol.2010.09.036

    Article  CAS  Google Scholar 

  • Soares B, da Costa Lopes AM, Silvestre AJ, Pinto PCR, Freire CS, Coutinho JA (2021) Wood delignification with aqueous solution of deep eutectic solvents. Ind Crops Prod 160:113128. https://doi.org/10.3390/fermentation9030314

    Article  CAS  Google Scholar 

  • Song H, Jia H, Wang Q, Zhao X, Yang G, Zhang M, Ma L (2020) A new environmentally-friendly system for extracting cellulose from corn straw the low temperature laccase system. Materials 13(2):437. https://doi.org/10.3390/ma13020437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Striegel AM (2016) Viscometric detection in seize-exclusion chromatography: Principles and select applications. Chromatographia 76(15–16):945–960. https://doi.org/10.1007/s10337-016-3078-0

    Article  CAS  Google Scholar 

  • Tagawa A, Muramatsu Y, Nagasuna T, Yano A, Iimoto M, Murata S (2003) Water absorption characteristics of wheat and barley during soaking. Trans ASAE 46(2):361–366. https://doi.org/10.13031/2013.12916)@2003

  • Tahiri C, Vignon MR (2000) TEMPO-oxidation of cellulose: Synthesis and characterisation of polyglucuronans. Cellulose 7:177–188. https://doi.org/10.1023/A:1009276009711

    Article  CAS  Google Scholar 

  • Varma AJ, Chavan VB (1995) Thermal properties of oxidized cellulose. Cellulose 2:41–49. https://doi.org/10.1007/BF00812771

    Article  CAS  Google Scholar 

  • Velma V, Poonam V, Pratima R, Alok R (2008) 2, 3-Dihydrazone cellulose: Prospective material for tissue engineering scaffolds. Mater Sci Eng 28(8):1441–1447. https://doi.org/10.1016/j.msec.2008.03.014

    Article  CAS  Google Scholar 

  • Xu A, Wang J, Wang H (2010) Effects of anionic structure and lithium salt addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem 12(2):268–275. https://doi.org/10.1039/B916882F

    Article  CAS  Google Scholar 

  • Yan H, Alam MN, van de Ven TG (2013) Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidazed cellulose fibers. Cellulose 20:1865–1875. https://doi.org/10.1007/s10570-013-9966-7

    Article  CAS  Google Scholar 

  • Yang J, Chen X, Zhang J, Wang Y, Wen H, Xie J (2021) Role of chitosan-based hydrogels in pollutants adsorption and freshwater harvesting: A critical review. Int J Biol Macromol 189:53–64. https://doi.org/10.1016/j.ijbiomac.2021.08.047

    Article  CAS  PubMed  Google Scholar 

  • Yin QF, Ju B, Zhang SF, Wang XB, Yang JZ (2008) Preparation and characteristics of novel dialdehyde aminothiazole starch and its adsorption properties for Cu (II) ions from aqueous solution. Carbohydrate Polymers. 72(2):326–333. https://doi.org/10.1016/2Fj.carbpol.2007.08.019

    Article  CAS  Google Scholar 

  • Zhang S, Li J, Chen S, Zhang X, Ma J, He J (2020) Oxidized cellulose-based hemostatic materials. Carbohyd Polym 230:115585. https://doi.org/10.1016/j.carbpol.2019.115585

    Article  CAS  Google Scholar 

  • Zhang Z, Rao Y, Ye M, Zou D, Liu Y (2023) Reduce Inhibitor from lignin Degradation and Improvement Anaerobic Digestion Performance by Fe2+ Activated Persulfate Oxidation Pretreament. Available at SSRN 4462356:1–32. https://doi.org/10.2139/ssrn.4462356

    Article  Google Scholar 

  • Zhao X, van der Heide E, Zhang T, Liu D (2010) Delignification of sugarcane bagasse with alkali and peracetic acid and characterization of the pulp. BioResources 5(3):1565–1580

    Article  CAS  Google Scholar 

  • Zhu H, Cheng JH, Ma J, Sun DW (2023) Deconstruction of pineapple peel cellulose based on Fe2+ assisted cold plasma pretreatment for cellulose nanofibrils preparation. Food Chem 401:134116. https://doi.org/10.1016/j.foodchem.2022.134116

    Article  CAS  PubMed  Google Scholar 

  • Zuppolini S, Salaams A, Cruz-Maya I, Guarino V, Borriello A (2022) Cellulose amphiphilic materials: Chemistry process and applications. Phamaceutics 14(2):386. https://doi.org/10.3390/pharmaceutics14020386

    Article  CAS  Google Scholar