behaviour-of-high-performance-alkali-activated-slag-concrete-filled-double-skin-steel-tubes-under-compression-loading-…-–-springer

Behaviour of high-performance alkali-activated slag concrete-filled double-skin steel tubes under compression loading … – Springer

  • Jokar Z, Mokhtar A (2018) Policy making in the cement industry for CO2 mitigation on the pathway of sustainable development-A system dynamics approach. J Clean Prod 201:142–155. https://doi.org/10.1016/j.jclepro.2018.07.286

    Article  Google Scholar 

  • Hossain MU, Poon CS, Kwong Wong MY, Khine A (2019) Techno-environmental feasibility of wood waste derived fuel for cement production. J Clean Prod 230:663–671. https://doi.org/10.1016/j.jclepro.2019.05.132

    Article  Google Scholar 

  • Ali MB, Saidur R, Hossain MS (2011) A review on emission analysis in cement industries. Renew Sustain Energy Rev 15:2252–2261. https://doi.org/10.1016/j.rser.2011.02.014

    Article  Google Scholar 

  • Yang KH, Song JK, Il Song K (2013) Assessment of CO2 reduction of alkali-activated concrete. J Clean Prod 39:265–272. https://doi.org/10.1016/J.JCLEPRO.2012.08.001

    Article  Google Scholar 

  • Mithun BM, Narasimhan MC (2016) Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate. J Clean Prod 112:837–844. https://doi.org/10.1016/j.jclepro.2015.06.026

    Article  Google Scholar 

  • Manjunath R, Narasimhan MC, Umesha KM (2019) Studies on high performance alkali activated slag concrete mixes subjected to aggressive environments and sustained elevated temperatures. Constr Build Mater. https://doi.org/10.1016/J.CONBUILDMAT.2019.116887

    Article  Google Scholar 

  • Akçaözoğlu S, Çiflikli M, Bozkaya Ö, Atiş CD, Ulu C (2022) Examination of mechanical properties and microstructure of alkali activated slag and slag-metakaolin blends exposed to high temperatures. Struct Concr 23:1273–1289. https://doi.org/10.1002/suco.202000080

    Article  Google Scholar 

  • Lyu WQ, Han LH (2019) Investigation on bond strength between recycled aggregate concrete (RAC) and steel tube in RAC-filled steel tubes. J Constr Steel Res 155:438–459. https://doi.org/10.1016/j.jcsr.2018.12.028

    Article  Google Scholar 

  • Kwan AKH, Dong CX, Ho JCM (2016) Axial and lateral stress–strain model for circular concrete-filled steel tubes with external steel confinement. Eng Struct 117:528–541. https://doi.org/10.1016/j.engstruct.2016.03.026

    Article  Google Scholar 

  • Ekmekyapar T (2016) Experimental performance of concrete filled welded steel tube columns. J Constr Steel Res 117:175–184. https://doi.org/10.1016/j.jcsr.2015.10.013

    Article  Google Scholar 

  • Han LH, Li W, Bjorhovde R (2014) Developments and advanced applications of concrete-filled steel tubular (CFST) structures: members. J Constr Steel Res 100:211–228. https://doi.org/10.1016/j.jcsr.2014.04.016

    Article  Google Scholar 

  • Liu F, Gardner L, Yang H (2014) Post-fire behaviour of reinforced concrete stub columns confined by circular steel tubes. J Constr Steel Res 102:82–103. https://doi.org/10.1016/j.jcsr.2014.06.015

    Article  Google Scholar 

  • Sun Y, Xu J, Zuo G (2023) Experimental and numerical studies on mechanical behavior of stiffened concrete-filled square steel tube columns subjected to axial compression. Struct Concr 24:802–817. https://doi.org/10.1002/suco.202200224

    Article  Google Scholar 

  • Rahmani Z, Naghipour M, Nematzadeh M (2021) Structural behavior of prestressed self-compacting concrete-encased concrete-filled steel tubes beams. Struct Concr 22:2011–2028. https://doi.org/10.1002/suco.202000184

    Article  Google Scholar 

  • Dong CX, Kwan AKH, Ho JCM (2017) Effects of external confinement on structural performance of concrete-filled steel tubes. J Constr Steel Res 132:72–82. https://doi.org/10.1016/j.jcsr.2016.12.024

    Article  Google Scholar 

  • Mander JB, Priestley MJ, Park R (1988) Theoretical stress–strain model for confined concrete. J Struct Eng 114(8):1804–1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)

    Article  Google Scholar 

  • Attard MM, Setunge S (1996) Stress–strain relationship of confined and unconfined concrete. ACI Mater J 93:432–442. https://doi.org/10.14359/9847

    Article  Google Scholar 

  • Rehmat S, Sadeghnejad A, Mantawy IM, Azizinamini A (2021) Experimental study on concrete filled steel tubes to footing connection using ultra-high performance concrete. Eng Struct 242:112540. https://doi.org/10.1016/j.engstruct.2021.112540

    Article  Google Scholar 

  • Tang Y, Zhu M, Chen Z, Wu C, Chen B, Li C, Li L (2022) Seismic performance evaluation of recycled aggregate concrete-filled steel tubular columns with field strain detected via a novel mark-free vision method. Structures 37:426–441. https://doi.org/10.1016/j.istruc.2021.12.055

    Article  Google Scholar 

  • Tao Z, Song TY, Uy B, Han LH (2016) Bond behavior in concrete-filled steel tubes. J Constr Steel Res 120:81–93. https://doi.org/10.1016/j.jcsr.2015.12.030

    Article  Google Scholar 

  • Qiang Z, Yaozhuang L, Kolozvari K (2018) Numerical modeling of steel–concrete composite structures. Struct Concr 19:1727–1739. https://doi.org/10.1002/suco.201700094

    Article  Google Scholar 

  • Tran VL, Ahmed M, Gohari S (2023) Prediction of the ultimate axial load of circular concrete-filled stainless steel tubular columns using machine learning approaches. Struct Concr. https://doi.org/10.1002/suco.202200877

    Article  Google Scholar 

  • Tao Z, Cao YF, Pan Z, Hassan MK (2018) Compre ssive behaviour of geopolymer concrete-filled steel columns at ambient and elevated temperatures. Int J High-Rise Build 7:327–342. https://doi.org/10.21022/IJHRB.2018.7.4.327

    Article  Google Scholar 

  • Katwal U, Aziz T, Tao Z, Uy B, Rahme D (2022) Tests of circular geopolymer concrete-filled steel columns under ambient and fire conditions. J Constr Steel Res 196:107393. https://doi.org/10.1016/j.jcsr.2022.107393

    Article  Google Scholar 

  • Fang H, Visintin P (2021) Behavior of geopolymer concrete-filled circular steel tube members. Ce/Papers 4:593–597. https://doi.org/10.1002/cepa.1336

    Article  Google Scholar 

  • Fang H, Visintin P (2022) Structural performance of geopolymer-concrete-filled steel tube members subjected to compression and bending. J Constr Steel Res 188:107026. https://doi.org/10.1016/j.jcsr.2021.107026

    Article  Google Scholar 

  • Gkantou M, Georgantzia E, Kadhim A, Kamaris GS, Sadique M (2023) Geopolymer concrete-filled aluminium alloy tubular cross-sections. Structures 51:528–543. https://doi.org/10.1016/j.istruc.2023.02.117

    Article  Google Scholar 

  • Hui C, Zhang Y, Wang Y, Hai R (2023) Test study on axial compression behavior of GCFST columns under unidirectional repeated load. Int J Steel Struct. https://doi.org/10.1007/s13296-023-00751-1

    Article  Google Scholar 

  • Noushini A, Aslani F, Castel A, Gilbert RI, Uy B, Foster S (2016) Compressive stress–strain model for low-calcium fly ash-based geopolymer and heat-cured Portland cement concrete. Cem Concr Compos 73:136–146. https://doi.org/10.1016/j.cemconcomp.2016.07.004

    Article  Google Scholar 

  • Thomas RJ, Peethamparan S (2015) Alkali-activated concrete: engineering properties and stress–strain behavior. Constr Build Mater 93:49–56. https://doi.org/10.1016/j.conbuildmat.2015.04.039

    Article  Google Scholar 

  • Zhu T, Liang H, Lu Y, Li W, Zhang H (2020) Axial behaviour of slender concrete-filled steel tube square columns strengthened with square concrete-filled steel tube jackets. Adv Struct Eng 23:1074–1086. https://doi.org/10.1177/1369433219888726

    Article  Google Scholar 

  • Yuan F, Huang H, Chen M (2019) Behaviour of square concrete-filled stiffened steel tubular stub columns under axial compression. Adv Struct Eng 22:1878–1894. https://doi.org/10.1177/1369433218819584

    Article  Google Scholar 

  • Ci J, Ahmed M, Tran VL, Jia H, Chen S (2022) Axial compressive behavior of circular concrete-filled double steel tubular short columns. Adv Struct Eng 25:259–276. https://doi.org/10.1177/13694332211046345

    Article  Google Scholar 

  • Chen S, Ahmed M, Ci J, Chen W, Sennah K (2022) Behavior and design of axially loaded square concrete-filled double steel tubular slender columns. Adv Struct Eng 25:2953–2965. https://doi.org/10.1177/13694332221113041

    Article  Google Scholar 

  • Ouyang Y, Zeng JJ, Li LG, Kwan AKH (2020) Influence of concrete mix proportions on axial performance of concrete-filled steel tubes made with self-compacting concrete. Adv Struct Eng 23:835–846. https://doi.org/10.1177/1369433219884457

    Article  Google Scholar 

  • Kumar S, Kumar Gupta P, Ashraf Iqbal M (2023) An experimental study on the development of self-compacting alkali-activated slag concrete mixes under ambient curing. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.03.558

    Article  Google Scholar 

  • Manjunath R, Narasimhan MC, Umesh KM, Shivam Kumar UK, Bharathi Bala (2019) Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes. Constr Build Mater 198:133–147. https://doi.org/10.1016/J.CONBUILDMAT.2018.11.242

    Article  Google Scholar 

  • Kumar S, Gupta PK, Iqbal MA (2023) Parametric sensitivity analysis of high-strength self-compacting alkali-activated slag concrete for enhanced microstructural and mechanical performance. J Sci Technol Trans Civ Eng, Iran. https://doi.org/10.1007/s40996-023-01227-2

    Book  Google Scholar 

  • IS 516: Part 1, Sec 1 (2021) Hardened concrete methods of test part 1 testing of strength of hardened concrete section 1 compressive, flexucal and split tensile strength

  • IS: 1608, Mechanical testing of metals–Tensile Testing, Bur. Indian Stand. New Delhi, India. (2005)

  • Han LH, Yao GH, Zhao XL (2005) Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). J Constr Steel Res 61:1241–1269. https://doi.org/10.1016/j.jcsr.2005.01.004

    Article  Google Scholar 

  • Cihan Yilmaz BC, Binbir E, Guzelbulut C, Yildirim H, Celik OC (2023) Circular concrete-filled double skin steel tubes under concentric compression: tests and FEA parametric study. Compos Struct 309:116765. https://doi.org/10.1016/j.compstruct.2023.116765

    Article  Google Scholar 

  • Kumar S, Gupta PK, Iqbal MA (2024) Experimental and numerical study on self-compacting alkali-activated slag concrete-filled steel tubes. J Constr Steel Res 214:108453. https://doi.org/10.1016/j.jcsr.2024.108453

    Article  Google Scholar 

  • Hasan HG, Ekmekyapar T (2019) Mechanical performance of stiffened concrete filled double skin steel tubular stub columns under axial compression. KSCE J Civ Eng 23:2281–2292. https://doi.org/10.1007/s12205-019-1313-6

    Article  Google Scholar 

  • Li JT, Chen ZP, Xu JJ, Jing CG, Xue JY (2018) Cyclic behavior of concrete-filled steel tubular column–reinforced concrete beam frames incorporating 100% recycled concrete aggregates. Adv Struct Eng 21:1802–1814. https://doi.org/10.1177/1369433218755521

    Article  Google Scholar 

  • Ho JCM, Ou XL, Li CW, Song W, Wang Q, Lai MH (2021) Uni-axial behaviour of expansive CFST and DSCFST stub columns. Eng Struct. https://doi.org/10.1016/j.engstruct.2021.112193

    Article  Google Scholar 

  • Gupta PK, Sarda SM, Kumar MS (2007) Experimental and computational study of concrete filled steel tubular columns under axial loads. J Constr Steel Res 63:182–193. https://doi.org/10.1016/j.jcsr.2006.04.004

    Article  Google Scholar 

  • Lin S, Zhao YG, He L (2018) Stress paths of confined concrete in axially loaded circular concrete-filled steel tube stub columns. Eng Struct 173:1019–1028. https://doi.org/10.1016/j.engstruct.2018.06.112

    Article  Google Scholar 

  • Dong M, Elchalakani M, Karrech A, Fawzia S, Mohamed Ali MS, Yang B, Xu SQ (2019) Circular steel tubes filled with rubberised concrete under combined loading. J Constr Steel Res 162:105613. https://doi.org/10.1016/j.jcsr.2019.05.003

    Article  Google Scholar 

  • Heaven Singh, (2014) behaviour of concrete filled steel tubular columns with different cross-sections, 667

  • ACI 318-19(22) Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, 2019 (Reapproved 2022)

  • Mander JB, Priestley MJN, Park R (1989) conducted providing the stress–strain relation for the concrete and steel are- known. The moments and curvatures associated with increasing flexural deformations of the column may be computed for various column axial loads by incrementing the curvature a. J Struct Eng 114:1804–1826

    Article  Google Scholar 

  • Richart RL, Erwin Frank, Brandtzæg, Anton, Brown (1928) A study of the failure of concrete under combined compressive stresses. Univ Illinois Eng Exp Station Bull 26:12

    Google Scholar 

  • Hu HT, Su FC (2011) Nonlinear analysis of short concrete-filled double skin tube columns subjected to axial compressive forces. Mar Struct 24:319–337. https://doi.org/10.1016/j.marstruc.2011.05.001

    Article  Google Scholar 

  • Hu H-T, Huang C-S, Wu M-H, Wu Y-M (2003) Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. J Struct Eng 129:1322–1329. https://doi.org/10.1061/(asce)0733-9445(2003)129:10(1322)

    Article  Google Scholar 

  • Saenz LP (1964) Discussion of Equation for the stress–strain curve of concrete by P. Desaui and S Krishnan ACI Journal 61:1229–1235

    Google Scholar 

  • Hu HT, Schnobrich WC (1989) Constitutive modeling of concrete by using nonassociated plasticity. J Mater Civ Eng 1(4):199–216

  • Ding Y, Dai JG, Shi CJ (2018) Fracture properties of alkali-activated slag and ordinary Portland cement concrete and mortar. Constr Build Mater 165:310–320. https://doi.org/10.1016/j.conbuildmat.2017.12.202

    Article  Google Scholar