Jokar Z, Mokhtar A (2018) Policy making in the cement industry for CO2 mitigation on the pathway of sustainable development-A system dynamics approach. J Clean Prod 201:142–155. https://doi.org/10.1016/j.jclepro.2018.07.286
Hossain MU, Poon CS, Kwong Wong MY, Khine A (2019) Techno-environmental feasibility of wood waste derived fuel for cement production. J Clean Prod 230:663–671. https://doi.org/10.1016/j.jclepro.2019.05.132
Ali MB, Saidur R, Hossain MS (2011) A review on emission analysis in cement industries. Renew Sustain Energy Rev 15:2252–2261. https://doi.org/10.1016/j.rser.2011.02.014
Yang KH, Song JK, Il Song K (2013) Assessment of CO2 reduction of alkali-activated concrete. J Clean Prod 39:265–272. https://doi.org/10.1016/J.JCLEPRO.2012.08.001
Mithun BM, Narasimhan MC (2016) Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate. J Clean Prod 112:837–844. https://doi.org/10.1016/j.jclepro.2015.06.026
Manjunath R, Narasimhan MC, Umesha KM (2019) Studies on high performance alkali activated slag concrete mixes subjected to aggressive environments and sustained elevated temperatures. Constr Build Mater. https://doi.org/10.1016/J.CONBUILDMAT.2019.116887
Akçaözoğlu S, Çiflikli M, Bozkaya Ö, Atiş CD, Ulu C (2022) Examination of mechanical properties and microstructure of alkali activated slag and slag-metakaolin blends exposed to high temperatures. Struct Concr 23:1273–1289. https://doi.org/10.1002/suco.202000080
Lyu WQ, Han LH (2019) Investigation on bond strength between recycled aggregate concrete (RAC) and steel tube in RAC-filled steel tubes. J Constr Steel Res 155:438–459. https://doi.org/10.1016/j.jcsr.2018.12.028
Kwan AKH, Dong CX, Ho JCM (2016) Axial and lateral stress–strain model for circular concrete-filled steel tubes with external steel confinement. Eng Struct 117:528–541. https://doi.org/10.1016/j.engstruct.2016.03.026
Ekmekyapar T (2016) Experimental performance of concrete filled welded steel tube columns. J Constr Steel Res 117:175–184. https://doi.org/10.1016/j.jcsr.2015.10.013
Han LH, Li W, Bjorhovde R (2014) Developments and advanced applications of concrete-filled steel tubular (CFST) structures: members. J Constr Steel Res 100:211–228. https://doi.org/10.1016/j.jcsr.2014.04.016
Liu F, Gardner L, Yang H (2014) Post-fire behaviour of reinforced concrete stub columns confined by circular steel tubes. J Constr Steel Res 102:82–103. https://doi.org/10.1016/j.jcsr.2014.06.015
Sun Y, Xu J, Zuo G (2023) Experimental and numerical studies on mechanical behavior of stiffened concrete-filled square steel tube columns subjected to axial compression. Struct Concr 24:802–817. https://doi.org/10.1002/suco.202200224
Rahmani Z, Naghipour M, Nematzadeh M (2021) Structural behavior of prestressed self-compacting concrete-encased concrete-filled steel tubes beams. Struct Concr 22:2011–2028. https://doi.org/10.1002/suco.202000184
Dong CX, Kwan AKH, Ho JCM (2017) Effects of external confinement on structural performance of concrete-filled steel tubes. J Constr Steel Res 132:72–82. https://doi.org/10.1016/j.jcsr.2016.12.024
Mander JB, Priestley MJ, Park R (1988) Theoretical stress–strain model for confined concrete. J Struct Eng 114(8):1804–1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
Attard MM, Setunge S (1996) Stress–strain relationship of confined and unconfined concrete. ACI Mater J 93:432–442. https://doi.org/10.14359/9847
Rehmat S, Sadeghnejad A, Mantawy IM, Azizinamini A (2021) Experimental study on concrete filled steel tubes to footing connection using ultra-high performance concrete. Eng Struct 242:112540. https://doi.org/10.1016/j.engstruct.2021.112540
Tang Y, Zhu M, Chen Z, Wu C, Chen B, Li C, Li L (2022) Seismic performance evaluation of recycled aggregate concrete-filled steel tubular columns with field strain detected via a novel mark-free vision method. Structures 37:426–441. https://doi.org/10.1016/j.istruc.2021.12.055
Tao Z, Song TY, Uy B, Han LH (2016) Bond behavior in concrete-filled steel tubes. J Constr Steel Res 120:81–93. https://doi.org/10.1016/j.jcsr.2015.12.030
Qiang Z, Yaozhuang L, Kolozvari K (2018) Numerical modeling of steel–concrete composite structures. Struct Concr 19:1727–1739. https://doi.org/10.1002/suco.201700094
Tran VL, Ahmed M, Gohari S (2023) Prediction of the ultimate axial load of circular concrete-filled stainless steel tubular columns using machine learning approaches. Struct Concr. https://doi.org/10.1002/suco.202200877
Tao Z, Cao YF, Pan Z, Hassan MK (2018) Compre ssive behaviour of geopolymer concrete-filled steel columns at ambient and elevated temperatures. Int J High-Rise Build 7:327–342. https://doi.org/10.21022/IJHRB.2018.7.4.327
Katwal U, Aziz T, Tao Z, Uy B, Rahme D (2022) Tests of circular geopolymer concrete-filled steel columns under ambient and fire conditions. J Constr Steel Res 196:107393. https://doi.org/10.1016/j.jcsr.2022.107393
Fang H, Visintin P (2021) Behavior of geopolymer concrete-filled circular steel tube members. Ce/Papers 4:593–597. https://doi.org/10.1002/cepa.1336
Fang H, Visintin P (2022) Structural performance of geopolymer-concrete-filled steel tube members subjected to compression and bending. J Constr Steel Res 188:107026. https://doi.org/10.1016/j.jcsr.2021.107026
Gkantou M, Georgantzia E, Kadhim A, Kamaris GS, Sadique M (2023) Geopolymer concrete-filled aluminium alloy tubular cross-sections. Structures 51:528–543. https://doi.org/10.1016/j.istruc.2023.02.117
Hui C, Zhang Y, Wang Y, Hai R (2023) Test study on axial compression behavior of GCFST columns under unidirectional repeated load. Int J Steel Struct. https://doi.org/10.1007/s13296-023-00751-1
Noushini A, Aslani F, Castel A, Gilbert RI, Uy B, Foster S (2016) Compressive stress–strain model for low-calcium fly ash-based geopolymer and heat-cured Portland cement concrete. Cem Concr Compos 73:136–146. https://doi.org/10.1016/j.cemconcomp.2016.07.004
Thomas RJ, Peethamparan S (2015) Alkali-activated concrete: engineering properties and stress–strain behavior. Constr Build Mater 93:49–56. https://doi.org/10.1016/j.conbuildmat.2015.04.039
Zhu T, Liang H, Lu Y, Li W, Zhang H (2020) Axial behaviour of slender concrete-filled steel tube square columns strengthened with square concrete-filled steel tube jackets. Adv Struct Eng 23:1074–1086. https://doi.org/10.1177/1369433219888726
Yuan F, Huang H, Chen M (2019) Behaviour of square concrete-filled stiffened steel tubular stub columns under axial compression. Adv Struct Eng 22:1878–1894. https://doi.org/10.1177/1369433218819584
Ci J, Ahmed M, Tran VL, Jia H, Chen S (2022) Axial compressive behavior of circular concrete-filled double steel tubular short columns. Adv Struct Eng 25:259–276. https://doi.org/10.1177/13694332211046345
Chen S, Ahmed M, Ci J, Chen W, Sennah K (2022) Behavior and design of axially loaded square concrete-filled double steel tubular slender columns. Adv Struct Eng 25:2953–2965. https://doi.org/10.1177/13694332221113041
Ouyang Y, Zeng JJ, Li LG, Kwan AKH (2020) Influence of concrete mix proportions on axial performance of concrete-filled steel tubes made with self-compacting concrete. Adv Struct Eng 23:835–846. https://doi.org/10.1177/1369433219884457
Kumar S, Kumar Gupta P, Ashraf Iqbal M (2023) An experimental study on the development of self-compacting alkali-activated slag concrete mixes under ambient curing. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.03.558
Manjunath R, Narasimhan MC, Umesh KM, Shivam Kumar UK, Bharathi Bala (2019) Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes. Constr Build Mater 198:133–147. https://doi.org/10.1016/J.CONBUILDMAT.2018.11.242
Kumar S, Gupta PK, Iqbal MA (2023) Parametric sensitivity analysis of high-strength self-compacting alkali-activated slag concrete for enhanced microstructural and mechanical performance. J Sci Technol Trans Civ Eng, Iran. https://doi.org/10.1007/s40996-023-01227-2
IS 516: Part 1, Sec 1 (2021) Hardened concrete methods of test part 1 testing of strength of hardened concrete section 1 compressive, flexucal and split tensile strength
IS: 1608, Mechanical testing of metals–Tensile Testing, Bur. Indian Stand. New Delhi, India. (2005)
Han LH, Yao GH, Zhao XL (2005) Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). J Constr Steel Res 61:1241–1269. https://doi.org/10.1016/j.jcsr.2005.01.004
Cihan Yilmaz BC, Binbir E, Guzelbulut C, Yildirim H, Celik OC (2023) Circular concrete-filled double skin steel tubes under concentric compression: tests and FEA parametric study. Compos Struct 309:116765. https://doi.org/10.1016/j.compstruct.2023.116765
Kumar S, Gupta PK, Iqbal MA (2024) Experimental and numerical study on self-compacting alkali-activated slag concrete-filled steel tubes. J Constr Steel Res 214:108453. https://doi.org/10.1016/j.jcsr.2024.108453
Hasan HG, Ekmekyapar T (2019) Mechanical performance of stiffened concrete filled double skin steel tubular stub columns under axial compression. KSCE J Civ Eng 23:2281–2292. https://doi.org/10.1007/s12205-019-1313-6
Li JT, Chen ZP, Xu JJ, Jing CG, Xue JY (2018) Cyclic behavior of concrete-filled steel tubular column–reinforced concrete beam frames incorporating 100% recycled concrete aggregates. Adv Struct Eng 21:1802–1814. https://doi.org/10.1177/1369433218755521
Ho JCM, Ou XL, Li CW, Song W, Wang Q, Lai MH (2021) Uni-axial behaviour of expansive CFST and DSCFST stub columns. Eng Struct. https://doi.org/10.1016/j.engstruct.2021.112193
Gupta PK, Sarda SM, Kumar MS (2007) Experimental and computational study of concrete filled steel tubular columns under axial loads. J Constr Steel Res 63:182–193. https://doi.org/10.1016/j.jcsr.2006.04.004
Lin S, Zhao YG, He L (2018) Stress paths of confined concrete in axially loaded circular concrete-filled steel tube stub columns. Eng Struct 173:1019–1028. https://doi.org/10.1016/j.engstruct.2018.06.112
Dong M, Elchalakani M, Karrech A, Fawzia S, Mohamed Ali MS, Yang B, Xu SQ (2019) Circular steel tubes filled with rubberised concrete under combined loading. J Constr Steel Res 162:105613. https://doi.org/10.1016/j.jcsr.2019.05.003
Heaven Singh, (2014) behaviour of concrete filled steel tubular columns with different cross-sections, 667
ACI 318-19(22) Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, 2019 (Reapproved 2022)
Mander JB, Priestley MJN, Park R (1989) conducted providing the stress–strain relation for the concrete and steel are- known. The moments and curvatures associated with increasing flexural deformations of the column may be computed for various column axial loads by incrementing the curvature a. J Struct Eng 114:1804–1826
Richart RL, Erwin Frank, Brandtzæg, Anton, Brown (1928) A study of the failure of concrete under combined compressive stresses. Univ Illinois Eng Exp Station Bull 26:12
Hu HT, Su FC (2011) Nonlinear analysis of short concrete-filled double skin tube columns subjected to axial compressive forces. Mar Struct 24:319–337. https://doi.org/10.1016/j.marstruc.2011.05.001
Hu H-T, Huang C-S, Wu M-H, Wu Y-M (2003) Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. J Struct Eng 129:1322–1329. https://doi.org/10.1061/(asce)0733-9445(2003)129:10(1322)
Saenz LP (1964) Discussion of Equation for the stress–strain curve of concrete by P. Desaui and S Krishnan ACI Journal 61:1229–1235
Hu HT, Schnobrich WC (1989) Constitutive modeling of concrete by using nonassociated plasticity. J Mater Civ Eng 1(4):199–216
Ding Y, Dai JG, Shi CJ (2018) Fracture properties of alkali-activated slag and ordinary Portland cement concrete and mortar. Constr Build Mater 165:310–320. https://doi.org/10.1016/j.conbuildmat.2017.12.202