References
-
Albeverio S.A., Ayupov S.A., Omirov B.A., Cartan subalgebras, weight spaces, and criterion of solvability of finite-dimensional Leibniz algebras. Rev. Mat. Complut., 2006, 19(1): 183–195
-
Alp M., Pullback crossed modules of algebroids. Iran. J. Sci. Technol. Trans. A Sci., 2008, 32(1): 1–5
-
Alp M., Pushout crossed modules of algebroids. Iran. J. Sci. Technol. Trans. A Sci., 2008, 32(3): 175–181
-
Alp M., Cat1-Lie–Rinehart algebras. In: Mathematical Applications in Modern Science, Mathematics and Computers in Science and Engineering Series, 38, Athens: WSEAS Press, 2014, 70–73
-
Barnes D.W., On Levi’s theorem for Leibniz algebras. Bull. Aust. Math. Soc., 2012, 86(2): 184–185
-
Blokh A.M., On a generalization of the concept of a Lie algebra. Dokl. Akad. Nauk SSSR, 1965, 165: 471–473
-
Casas J.M., Çetin S., Uslu E.Ö., Crossed modules in the category of Loday QD-Rinehart algebras. Homology Homotopy Appl., 2020, 22(2): 347–366
-
Casas J.M., Khmaladze E., Pacheco N., A non-abelian tensor product of Hom-Lie algebras. Bull. Malays. Math. Sci. Soc., 2017, 40(3): 1035–1054
-
Casas J.M., Ladra M., Omirov B.A., Karimjanov I.A., Classification of solvable Leibniz algebras with null-filiform nilradical. Linear Multilinear Algebra, 2013, 61(6): 758–774
-
Casas J.M., Ladra M., Pirashvili T., Crossed modules for Lie–Rinehart algebras. J. Algebra, 2004, 274(1): 192–201
-
Cuvier C., Algèbres de Leibnitz: définitions, propriétés. Ann. Sci. Écol. Norm. Sup. (4), 1994, 27(1): 1–45
-
Gao Y., Leibniz homology of unitary Lie algebras. J. Pure Appl. Algebra, 1999, 140(1): 33–56
-
Gao Y., The second Leibniz homology group for Kac–Moody Lie algebras. Bull. London Math. Soc., 2000, 32(1): 25–33
-
Guo S., Zhang X., Wang S., On split regular Hom-Leibniz–Rinehart algebras. J. Math. Res. Appl., 2022, 42(5): 481–498
-
Hartwig J., Larsson D., Silvestrov S., Deformations of Lie algebras using σ-derivations. J. Algebra, 2006, 295(2): 314–361
-
Herz J.C., Pseudo-algèbres de Lie. I. C. R. Acad. Sci. Paris, 1953, 236: 1935–1937
-
Huebschmann J., Poisson cohomology and quantization. J. Reine Angew. Math., 1990, 408: 57–113
-
Huebschmann J., Duality for Lie–Rinehart algebras and the modular class. J. Reine Angew. Math., 1999, 510: 103–159
-
Laurent-Gengoux C., Teles J., Hom-Lie algebroids. J. Geom. Phys., 2013, 68: 69–75
-
Liu D., Lin L., On the toroidal Leibniz algebras. Acta Math. Sin. (Engl. Ser.), 2008, 24(2): 227–240
-
Loday J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. (2), 1993, 39(3–4): 269–293
-
Loday J.-L., Pirashvili T., Universal enveloping algebra of Leibniz algebras and (co)homology. Math. Ann., 1993, 296(1): 139–158
-
Mackenzie K., Lie Groupoids and Lie Algebroids in Differential Geometry. London Mathematical Society Lecture Note Series, Cambridge: Cambridge University Press, 1987, 124: xvi+327 pp.
-
Makhlouf A., Silvestrov S., Hom-algebra structures. J. Gen. Lie Theory Appl., 2008, 2(2): 51–64
-
Makhlouf A., Silvestrov S., Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras. Forum Math., 2010, 22(4): 715–739
-
Mandal A., Kumar Mishra S., Hom-Lie–Rinehart algebras. Comm. Algebra, 2018, 46(9): 3722–3744
-
Omirov B.A., Conjugacy of Cartan subalgebras of complex finite-dimensional Leibniz algebras. J. Algebra, 2006, 302(2): 887–896
-
Palais R.S., The cohomology of Lie rings. Proc. Sympos. Pure Math., Providence, RI: Amer. Math. Soc., 1961, 3: 130–137
-
Rinehart G.S., Differential forms on general commutative algebras. Trans. Amer. Math. Soc., 1963, 108: 195–222
-
Sheng Y., Representations of Hom-Lie algebras. Algebr. Represent. Theory, 2012, 15(6): 1081–1098
-
Wang Q., Tan S., Leibniz central extension on a Block Lie algebra. Algebra Colloq., 2007, 14(4): 713–720
-
Yau D., Enveloping algebras of Hom-Lie algebras. J. Gen. Lie Theory Appl., 2008, 2(2): 95–108
-
Zhang T., Han F.Y., Bi Y.H., Crossed modules for Hom-Lie-Rinehart algebras. Colloq. Math., 2018, 152(1): 1–14
-
Zhang T., Zhang H.Y., Crossed modules for Hom-Lie antialgebras. J. Algebra Appl., 2022, 21(7): Paper No. 2250135, 23 pp.