predicting-the-effect-of-hydro-climatic-and-land-use-dynamic-variables-on-watershed-health-status-|-environmental-…-–-springer

Predicting the effect of hydro-climatic and land-use dynamic variables on watershed health status | Environmental … – Springer

  • Ahn SR, Kim SJ (2017) Assessment of integrated watershed health based on the natural environment, hydrology, water quality, and aquatic ecology. Hydrol Earth Syst Sci 21:5583–5602. https://doi.org/10.5194/hess-21-5583-2017

    Article  Google Scholar 

  • Ahn SR, Kim SJ (2019) Assessment of watershed health, vulnerability and resilience for determining protection and restoration priorities. Environ Model Softw 122:103926. https://doi.org/10.1016/j.envsoft.2017.03.014

    Article  Google Scholar 

  • Alilou H, Rahmati O, Singh VP et al (2019) Evaluation of watershed health using fuzzy-ANP approach considering geo-environmental and topo-hydrological criteria. J Environ Manage 232:22–36

    Article  Google Scholar 

  • Angerer JP, Fox WE, Wolfe JE, Tolleson DR, Owen T (2023) Chapter 20: land degradation in rangeland ecosystems. In: Ivanpillai R, Shroder JF (eds) Biological and environmental hazards, risks, and disasters, 2nd edn. Elsevier Press, pp 395–434

  • Azam MF, Kargel JS, Shea JM et al (2021) Glaciohydrology of the Himalaya-Karakoram. Science 373:eabf3668

    Article  CAS  Google Scholar 

  • Bitar A, Mitraka Z, Feigenwinter, Ch and Parlow E, Heldens W et al (2016) Calibration of DART radiative transfer model with satellite images for simulating albedo and thermal irradiance images and 3D radiative budget of urban environment. In: Proceedings of the 36th EARSEL symposium. pp 120–121

  • Chamani R, Vafakhah M, Tavosi M, Zare S (2022) Assessment of the effect of climate change on the health status of Atrak watershed in Northeastern of Iran. Arab J Geosci 15:1745

    Article  Google Scholar 

  • Chamani R, Sadeghi SH, Zare S et al (2023a) Flood-oriented watershed health and ecological security conceptual modeling using PSR approach for the Sharghonj watershed, South Khorasan Province. Nat Resour Model, Iran, p e12385

    Google Scholar 

  • Chamani R, Vafakhah M, Sadeghi SH (2023b) Changes in reliability–resilience–vulnerability-based watershed health under climate change scenarios in the Efin Watershed. Iran Nat Hazards 116:2457–2476

    Article  Google Scholar 

  • Chatfield C (2013) The analysis of time series: theory and practice. Springer

    Google Scholar 

  • Cook NA, Sarver EA, Krometis LH, Huang J (2015) Habitat and water quality as drivers of ecological system health in Central Appalachia. Ecol Eng 84:180–189

    Article  Google Scholar 

  • Cui Q, Ammar ME, Iravani M et al (2021) Regional wetland water storage changes: the influence of future climate on geographically isolated wetlands. Ecol Indic 120:106941

    Article  Google Scholar 

  • Dai Q, Liu G, Xue S et al (2007) Health diagnoses of ecosystems subject to a typical erosion environment in Zhifanggou watershed, north-west China. Front for China 2:241–250

    Article  Google Scholar 

  • Dastorani M, Mirzavand M, Dastorani MT, Khosravi H (2020) Simulation and prediction of surface water quality using stochastic models. Sustain Water Resour Manag 6:1–17

    Article  Google Scholar 

  • Deshmukh A, Singh R (2016) Physio-climatic controls on vulnerability of watersheds to climate and land use change across the US. Water Resour Res 52:8775–8793

    Article  Google Scholar 

  • Dongare CU, Deota BS, Deshpande RD (2022) High resolution morphometric studies with special reference to hydrological setup of Khapri watershed, Dangs district, Gujarat, Western India. Geocarto Int 37:3697–3720

    Article  Google Scholar 

  • Duan T, Feng J, Chang X, Li Y (2022) Watershed health assessment using the coupled integrated multistatistic analyses and PSIR framework. Sci Total Environ 847:157523

    Article  CAS  Google Scholar 

  • Ebrahimi Gatgash Z, Sadeghi SH (2023) Prioritization-based management of the watershed using health assessment analysis at subwatershed scale. Environ Dev Sustain 25:9673–9702

    Article  Google Scholar 

  • Ervinia A, Huang J, Huang Y, Lin J (2019) Coupled effects of climate variability and land use pattern on surface water quality: an elasticity perspective and watershed health indicators. Sci Total Environ 693:133592

    Article  CAS  Google Scholar 

  • Eshetu M (2020) Hydro-climatic variability and trend analysis of Modjo river watershed, Awash River Basin of Ethiopia. Hydrol Curr Res 11:1–8

    Google Scholar 

  • Foroumandi E, Nourani V, Dąbrowska D, Kantoush SA (2022) Linking spatial–temporal changes of vegetation cover with hydroclimatological variables in terrestrial environments with a focus on the Lake Urmia Basin. Land 11:115

    Article  Google Scholar 

  • Gatgash ZE, Sadeghi SH (2024) Comparative effect of conventional and adaptive management approaches on watershed health. Soil Tillage Res 235:105869

    Article  Google Scholar 

  • Gharaibeh A, Shaamala A, Obeidat R, Al-Kofahi S (2020) Improving land-use change modeling by integrating ANN with cellular automata-Markov chain model. Heliyon 6(9):1–18

  • Gonzales-Inca CA, Lepistö A, Huttula T (2016) Trend detection in water-quality and load time-series from agri-cultural catchments of Yläneenjoki and Pyhäjoki, SW Finland. Boreal Env Res 21(1–2):161–180

  • Hazbavi Z, Sadeghi SHR (2017) Watershed health characterization using reliability–resilience–vulnerability conceptual framework based on hydrological responses. L Degrad Dev 28:1528–1537

    Article  Google Scholar 

  • Hazbavi Z, Baartman JEM, Nunes JP et al (2018a) Changeability of reliability, resilience and vulnerability indicators with respect to drought patterns. Ecol Indic 87:196–208

    Article  Google Scholar 

  • Hazbavi Z, Keesstra SD, Nunes JP et al (2018b) Health comparative comprehensive assessment of watersheds with different climates. Ecol Indic 93:781–790

    Article  CAS  Google Scholar 

  • Hazbavi Z, Sadeghi SH, Gholamalifard M et al (2018c) Land cover based watershed health assessment. AGROFOR Int J 3:47–55

    Google Scholar 

  • Hazbavi Z, Sadeghi SH, Gholamalifard M, Davudirad AA (2020) Watershed health assessment using the pressure–state–response (PSR) framework. L Degrad Dev 31:3–19

    Article  Google Scholar 

  • Hook SE, Gallagher EP, Batley GE (2014) The role of biomarkers in the assessment of aquatic ecosystem health. Integr Environ Assess Manag 10:327–341

    Article  CAS  Google Scholar 

  • Hoque YM, Tripathi S, Hantush MM, Govindaraju RS (2016) Aggregate measures of watershed health from reconstructed water quality data with uncertainty. J Environ Qual 45:709–719. https://doi.org/10.2134/jeq2015.10.0508

    Article  CAS  Google Scholar 

  • Huang J, Ervinia A, Huang Y (2017) Linking land use with water pollution in coastal watersheds of China. In: Huang J, Ervinia A, Huang Y (eds) Challenges towards ecological sustainability in China. pp 241–279

  • Hughes HM, Koolen S, Kuhnert M et al (2023) Towards a farmer-feasible soil health assessment that is globally applicable. J Environ Manage 345:118582

    Article  CAS  Google Scholar 

  • Iacono M, Levinson D, El-Geneidy A, Wasfi R (2015) A Markov chain model of land use change. TeMA J L Use, Mobil Environ 8:263–276

    Google Scholar 

  • Jabbar FK, Grote K (2020) Evaluation of the predictive reliability of a new watershed health assessment method using the SWAT model. Environ Monit Assess 192:1–21

    Article  Google Scholar 

  • Kahraman ÜM (2022) Chapter 17: time series analysis of financial data in the COVID-19 pandemic. In: İyi̇t N, Özbek BH, Toptaş, A (eds) Current research in social, human and administrative sciences. pp 273–291

  • Kambombe OC (2018) Impact of climate variability and land use change on stream flow in Lake Chilwa basin. Egerton University, Malawi

    Google Scholar 

  • Lee J, Chung J, Woo S et al (2021) Evaluation of land-use changes impact on watershed health using probabilistic approaches. Water 13:2348

    Article  CAS  Google Scholar 

  • Liang P, Liming D, Guijie Y (2010) Ecological security assessment of Beijing based on PSR model. Procedia Environ Sci 2:832–841

    Article  Google Scholar 

  • Liu D, Hao S (2017) Ecosystem health assessment at county-scale using the pressure-state-response framework on the Loess Plateau, China. Int J Environ Res Public Health 14:2

    Article  Google Scholar 

  • Liu X, Zhang Y, Zhang J (2006) Healthy Yellow River’s essence and indicators. J Geogr Sci 16:259–270

    Article  Google Scholar 

  • Liu X, Zhang Z, Li M et al (2022) Ecological source identification based on the PSR model framework and structural features: a case study in Tianjin. China Arab J Geosci 15:853

    Article  Google Scholar 

  • Lyu J, Shen B, Li H (2015) Dynamics of major hydro-climatic variables in the headwater catchment of the Tarim River Basin, Xinjiang, China. Quat Int 380:143–148

    Article  Google Scholar 

  • Ma X, Zhang L, Hu J, Palazoglu A (2018) A model-free approach to reduce the effect of autocorrelation on statistical process control charts. J Chemom 32:e3070

    Article  Google Scholar 

  • Mallya G, Hantush M, Govindaraju RS (2018) Composite measures of watershed health from a water quality perspective. J Environ Manage 214:104–124

    Article  CAS  Google Scholar 

  • Mojtahedi A, Dadashzadeh M, Azizkhani M et al (2022) Assessing climate and human activity effects on lake characteristics using spatio-temporal satellite data and an emotional neural network. Environ Earth Sci 81:61

    Article  Google Scholar 

  • Murphy JC (2020) Changing suspended sediment in United States rivers and streams: linking sediment trends to changes in land use/cover, hydrology and climate. Hydrol Earth Syst Sci 24:991–1010

    Article  Google Scholar 

  • Neri AC, Dupin P, Sánchez LE (2016) A pressure–state–response approach to cumulative impact assessment. J Clean Prod 126:288–298

    Article  Google Scholar 

  • Ngonzo Luwesi C, Obando JA, Shisanya CA (2017) The impact of a warming micro-climate on Muooni farmers of Kenya. Agriculture 7:20

    Google Scholar 

  • Park S, Oh C, Jeon S et al (2011) Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation. J Hydrol 399:263–273

    Article  Google Scholar 

  • Phaneuf DJ, Smith VK, Palmquist RB, Pope JC (2008) Integrating property value and local recreation models to value ecosystem services in urban watersheds. Land Econ 84:361–381

    Article  Google Scholar 

  • Rahman MATMT, Hoque S, Saadat AHM (2017) Selection of minimum indicators of hydrologic alteration of the Gorai river, Bangladesh using principal component analysis. Sustain Water Resour Manag 3:13–23. https://doi.org/10.1007/s40899-017-0079-6

    Article  Google Scholar 

  • Rahnama MR (2021) Forecasting land-use changes in Mashhad Metropolitan area using cellular automata and Markov chain model for 2016–2030. Sustain Cities Soc 64:102548

    Article  Google Scholar 

  • Rani G, Kaur J, Kumar A, Yogalakshmi KN (2020) Ecosystem health and dynamics: an indicator of global climate change. In: Singh P, Singh R, Srivastava V (eds) Contemporary environmental issues and challenges in era of climate change. Springer, Singapore. https://doi.org/10.1007/978-981-32-9595-7_1

  • Rimal B, Zhang L, Keshtkar H et al (2018) Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and Markov chain. ISPRS Int J Geo-Information 7:154

    Article  Google Scholar 

  • Roy S (2019) Delta dynamics: understanding process, pattern, and people using remote sensing and systems analysis in Coastal Louisiana and Amazon River Delta. Doctoral dissertation, Indiana University

  • Sadeghi SH, Hazbavi Z, Gholamalifard M (2019a) Interactive impacts of climatic, hydrologic and anthropogenic activities on watershed health. Sci Total Environ 648:880–893

    Article  CAS  Google Scholar 

  • Sadeghi SHR, Sadoddin A, Asadi Neivan OA et al (2019b) Watershed health and sustainability (fundamentals, approaches and assessment methods). Tarbiat Modares University Press, p 288

  • Sadeghi SH, Vafakhah M, Moosavi V et al (2022) Assessing the health and ecological security of a human induced watershed in central Iran. Ecosyst Heal Sustain 8:2090447

    Article  Google Scholar 

  • Sadeghi SH, Zabihi Silabi M, Sarvi Sadrabad H et al (2023) Watershed health and ecological security modeling using anthropogenic, hydrologic, and climatic factors. Nat Resour Model 36(3):e12371

  • Sadeghi SH, Khaledi Darvishan A, Vafakhah M et al (2023) Conceptualization and evaluation of Asiabrood watershed health, Chalus Township, Iran. J Watershed Manag Res 4(27):15–25

  • Salehi N, Ekhtesasi MR, Talebi A (2019) Predicting locational trend of land use changes using CA-Markov model (case study: Safarod Ramsar watershed). J RS GIS Nat Resour 10:106–120

    Google Scholar 

  • Salehpour Jam A, Mosaffaie J, Tabatabaei MR (2021) Management responses for Chehel-Chay watershed health improvement using the DPSIR Framework. J Agric Sci Technol 23:797–811

    Google Scholar 

  • Sanchez GM, Nejadhashemi AP, Zhang Z et al (2015) Linking watershed-scale stream health and socioeconomic indicators with spatial clustering and structural equation modeling. Environ Model Softw 70:113–127

    Article  Google Scholar 

  • Sankarrao L, Ghose DK, Rathinsamy M (2021) Predicting land-use change: intercomparison of different hybrid machine learning models. Environ Model Softw 145:105207

    Article  Google Scholar 

  • Senanayake S, Pradhan B, Huete A, Brennan J (2023) Spatial modeling of soil erosion hazards and crop diversity change with rainfall variation in the Central Highlands of Sri Lanka. Sci Total Environ 806(Part 2):150405

  • Singh M, Sinha R (2021) Hydrogeomorphic indicators of wetland health inferred from multi-temporal remote sensing data for a new Ramsar site (Kaabar Tal). India Ecol Indic 127:107739

    Article  Google Scholar 

  • Singh R, Pandey VP, Kayastha SP (2021) Hydro-climatic extremes in the Himalayan watersheds: a case of the Marshyangdi Watershed. Nepal Theor Appl Climatol 143:131–158

    Article  Google Scholar 

  • Singh R (2022) Assessment of water availability and river health in the Marshyangdi watershed, Nepal. Institute of Science and Technology, Environmental Science

  • Suehring A (2017) Assessment of watershed condition and vulnerability to forecasted land-use/land-cover change in the Northwestern Great Plains of western South Dakota. Master of Science (MS), Natural Resource Management Department, South Dakota State University, p 122

  • Sun B, Tang J, Yu D et al (2019) Ecosystem health assessment: a PSR analysis combining AHP and FCE methods for Jiaozhou Bay, China1. Ocean Coast Manag 168:41–50

    Article  Google Scholar 

  • Tankpa V, Wang L, Awotwi A et al (2021) Modeling the effects of historical and future land use/land cover change dynamics on the hydrological response of Ashi watershed, northeastern China. Environ Dev Sustain 23:7883–7912

    Article  Google Scholar 

  • Tariq A, Mumtaz F (2023) A series of spatio-temporal analyses and predicting modeling of land use and land cover changes using an integrated Markov chain and cellular automata models. Environ Sci Pollut Res 30:47470–47484

    Article  Google Scholar 

  • Taylor DL, Bolgrien DW, Angradi TR et al (2013) Habitat and hydrology condition indices for the upper Mississippi, Missouri, and Ohio rivers. Ecol Indic 29:111–124

    Article  Google Scholar 

  • Venkatesh K, Preethi K, Ramesh H (2020) Evaluating the effects of forest fire on water balance using fire susceptibility maps. Ecol Indic 110:105856

    Article  Google Scholar 

  • Verdonschot PFM, Spears BM, Feld CK et al (2013) A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters. Hydrobiologia 704:453–474

    Article  Google Scholar 

  • Vollmer D, Shaad K, Souter NJ et al (2018) Integrating the social, hydrological and ecological dimensions of freshwater health: the Freshwater Health Index. Sci Total Environ 627:304–313

    Article  CAS  Google Scholar 

  • Wang D, Zhang S, Wang G et al (2019a) Quantitative assessment of the influences of Three Gorges Dam on the water level of Poyang Lake. China Water 11:1519

    Article  Google Scholar 

  • Wang Q, Li S, Li R (2019b) Evaluating water resource sustainability in Beijing, China: combining PSR model and matter-element extension method. J Clean Prod 206:171–179

    Article  Google Scholar 

  • Woznicki SA, Nejadhashemi AP, Ross DM et al (2015) Ecohydrological model parameter selection for stream health evaluation. Sci Total Environ 511:341–353

    Article  CAS  Google Scholar 

  • Yang L, Scheffran J, Qin H, You Q (2015) Climate-related flood risks and urban responses in the Pearl River Delta, China. Reg Environ Chang 15:379–391

    Article  Google Scholar 

  • Yu G, Yu Q, Hu L et al (2013) Ecosystem health assessment based on analysis of a land use database. Appl Geogr 44:154–164

    Article  Google Scholar 

  • Zeraatpisheh M, Garosi Y, Owliaie HR et al (2022) Improving the spatial prediction of soil organic carbon using environmental covariates selection: a comparison of a group of environmental covariates. CATENA 208:105723

    Article  CAS  Google Scholar 

  • Zhang S, Xiang M, Xu Z et al (2020) Evaluation of water cycle health status based on a cloud model. J Clean Prod 245:118850

    Article  Google Scholar 

  • Zhou D, Lin Z, Liu L, Zimmermann D (2013) Assessing secondary soil salinization risk based on the PSR sustainability framework. J Environ Manage 128:642–654

    Article  CAS  Google Scholar