comparison-between-multi-rusle-sdr-models-for-estimation-of-reservoir-sedimentation:-a-case-study-of-dokan-lake-…-–-springer

Comparison between multi RUSLE-SDR models for estimation of reservoir sedimentation: a case study of Dokan Lake … – Springer

  • Abdullah S (2001) Climate atlas of Iraq. Ministry of Transport and Communication. GEOSURV library, Report no. 4154 Baghdad-Iraq

  • Abdulrahman SA (2018) The drying up of the Lower Zab River and future water disputes between Iran, Kurdistan Region and Iraq. Int J Environ Stud 75:29–44. https://doi.org/10.1080/00207233.2017.1406725

    Article  Google Scholar 

  • Abebe N, Eekhout J, Vermeulen B et al (2023) The potential and challenges of the ‘RUSLE-IC-SDR’ approach to identify sediment dynamics in a Mediterranean catchment. CATENA. 233:107480. https://doi.org/10.1016/j.catena.2023.107480

    Article  Google Scholar 

  • Ahmadi Mirghaed F, Souri B, Mohammadzadeh M et al (2018) Evaluation of the relationship between soil erosion and landscape metrics across Gorgan Watershed in northern Iran. Environ Monit Assess. https://doi.org/10.1007/s10661-018-7040-5

    Article  Google Scholar 

  • Akbarzadeh A, Ghorbani-Dashtaki S, Naderi-Khorasgani M et al (2016) Monitoring and assessment of soil erosion at micro-scale and macro-scale in forests affected by fire damage in northern Iran. Environ Monit Assess 188:699. https://doi.org/10.1007/s10661-016-5712-6

    Article  Google Scholar 

  • Alatorre LC, Beguería S, Lana-Renault N et al (2012) Soil erosion and sediment delivery in a mountain catchment under scenarios of land use change using a spatially distributed numerical model. Hydrol Earth Syst Sci 16:1321–1334. https://doi.org/10.5194/hess-16-1321-2012

    Article  Google Scholar 

  • Alemayehu AA, Muluneh A, Moges A, Kendie H (2020) Estimation of sediment yield and effectiveness of level stone bunds to reduce sediment loss in the Gumara-Maksegnit watershed, Nile Basin, Ethiopia. J Soils Sediments 20:3756–3768. https://doi.org/10.1007/s11368-020-02715-y

    Article  CAS  Google Scholar 

  • Alewell C, Borrelli P, Meusburger K, Panagos P (2019) Using the USLE: chances, challenges and limitations of soil erosion modelling. Int Soil Water Conserv Res. 7:203–225. https://doi.org/10.1016/j.iswcr.2019.05.004

    Article  Google Scholar 

  • Al-Faraj FAM, Al-Dabbagh BNS (2015) Assessment of collective impact of upstream watershed development and basin-wide successive droughts on downstream flow regime: the Lesser Zab transboundary basin. J Hydrol. 530:419–430. https://doi.org/10.1016/j.jhydrol.2015.09.074

    Article  Google Scholar 

  • Ali R, Ismael A, Heryansyah A, Nawaz N (2019) Long term historic changes in the flow of Lesser Zab river Iraq. Hydrology 6(1):22

    Article  Google Scholar 

  • Ali AA, Hassan R, Dawood AH et al (2020) Sediment flux from Lesser Zab River in Dokan reservoir: implications for the sustainability of long-term water resources in Iraq. River Res Appl. 36:351–361. https://doi.org/10.1002/rra.3595

    Article  Google Scholar 

  • Ali MG, Ali S, Arshad RH et al (2021) Estimation of potential soil erosion and sediment yield: a case study of the transboundary Chenab River catchment. Water 13(24):3647

    Article  Google Scholar 

  • Al-Kakey O, Othman AA, Al-Mukhtar M, Dunger V (2023) Proposing optimal locations for runoff harvesting and water management structures in the Hami Qeshan watershed Iraq. ISPRS Int. J. Geo-Inf 12(8):312

    Article  Google Scholar 

  • Allafta H, Opp C (2022) Soil erosion assessment using the RUSLE model, remote sensing, and GIS in the Shatt Al-Arab Basin (Iraq-Iran). Appl. Sci. 12(15):7776

    Article  CAS  Google Scholar 

  • Al-Saady Y, Al-Suhail Q, Al-Tawash B, Othman A (2016) Drainage network extraction and morphometric analysis using remote sensing and GIS mapping techniques (Lesser Zab River Basin, Iraq and Iran). Environ earth Sci. https://doi.org/10.1007/s12665-016-6038-y

    Article  Google Scholar 

  • Al-Suhili RH, Karim RA (2015) Daily inflow forecasting for Dukan reservoir in Iraq using artificial neural networks. Int J Water 9:194–208. https://doi.org/10.1504/IJW.2015.068961

    Article  CAS  Google Scholar 

  • Arekhi S, Niazi Y, Kalteh AM (2012) Soil erosion and sediment yield modeling using RS and GIS techniques: a case study. Iran Arab J Geosci 5:285–296. https://doi.org/10.1007/s12517-010-0220-4

    Article  Google Scholar 

  • Arnoldus HMJ (1977) Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morocco. FAO Soils Bull 34:39–51

    Google Scholar 

  • Arnoldus HMJ (1980) An approximation of the rainfall factor in the Universal Soil Loss Equation. An approx rainfall factor univers soil loss equation. pp 127–132

  • Avand M, Mohammadi M, Mirchooli F et al (2022) A new approach for smart soil erosion modeling: integration of empirical and machine-learning models. Environ Model Assess. https://doi.org/10.1007/s10666-022-09858-x

    Article  Google Scholar 

  • Azari M, Oliaye A, Nearing MA (2021) Expected climate change impacts on rainfall erosivity over Iran based on CMIP5 climate models. J Hydrol. 593:125826. https://doi.org/10.1016/j.jhydrol.2020.125826

    Article  Google Scholar 

  • Azizian A, Koohi S (2021) The effects of applying different DEM resolutions, DEM sources and flow tracing algorithms on LS factor and sediment yield estimation using USLE in Barajin river basin (BRB). Iran Paddy Water Environ 19:453–468. https://doi.org/10.1007/s10333-021-00847-6

    Article  Google Scholar 

  • Bagarello V, Ferro V, Pampalone V et al (2018) Predicting soil loss in central and south Italy with a single USLE-MM model. J Soils Sediments 18:3365–3377. https://doi.org/10.1007/s11368-018-1953-z

    Article  Google Scholar 

  • Bakker MM, Govers G, van Doorn A et al (2008) The response of soil erosion and sediment export to land-use change in four areas of Europe: the importance of landscape pattern. Geomorphology. 98:213–226. https://doi.org/10.1016/j.geomorph.2006.12.027

    Article  Google Scholar 

  • Batista PVG, Davies J, Silva MLN, Quinton JN (2019) On the evaluation of soil erosion models: are we doing enough? Earth-Science Rev. 197:102898. https://doi.org/10.1016/j.earscirev.2019.102898

    Article  Google Scholar 

  • Bayazıt Y, Koç C (2022) The impact of forest fires on floods and erosion: Marmaris, Turkey. Environ Dev Sustain 24:13426–13445. https://doi.org/10.1007/s10668-022-02624-9

    Article  Google Scholar 

  • Benavidez R, Jackson B, Maxwell D, Norton K (2018) A review of the (Revised) Universal Soil Loss Equation ((R) USLE): with a view to increasing its global applicability and improving soil loss estimates. Hydrol Earth Syst Sci 22:6059–6086

    Article  Google Scholar 

  • Bluman AG (2004) Elementary statistics a step by step approach, Fifth Edition. McGraw Hill Publications, New York, 811pp

  • Bodenstein D, Clarke C, Watson A et al (2022) Evaluation of global and continental scale soil maps for southern Africa using selected soil properties. CATENA. 216:106381. https://doi.org/10.1016/j.catena.2022.106381

    Article  Google Scholar 

  • Borselli L, Cassi P, Torri D (2008) Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. CATENA. 75:268–277. https://doi.org/10.1016/j.catena.2008.07.006

    Article  Google Scholar 

  • Cao X, Hu X, Han M et al (2022) Characteristics and predictive models of hillslope erosion in burned areas in Xichang, China, on March 30, 2020. CATENA. 217:106509. https://doi.org/10.1016/j.catena.2022.106509

    Article  Google Scholar 

  • Cavalli M, Tarolli P, Marchi L, Dalla Fontana G (2008) The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology. CATENA. 73:249–260. https://doi.org/10.1016/j.catena.2007.11.001

    Article  Google Scholar 

  • Cavalli M, Trevisani S, Comiti F, Marchi L (2013) Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology. 188:31–41. https://doi.org/10.1016/j.geomorph.2012.05.007

    Article  Google Scholar 

  • Chuenchum P, Xu M, Tang W (2020) Estimation of soil erosion and sediment yield in the lancang-mekong river using the modified revised universal soil loss equation and GIS techniques. Water 12(1):135

    Article  Google Scholar 

  • da Cunha ER, Santos CAG, da Silva RM et al (2022) Assessment of current and future land use/cover changes in soil erosion in the Rio da Prata basin (Brazil). Sci Total Environ. 818:151811. https://doi.org/10.1016/j.scitotenv.2021.151811

    Article  CAS  Google Scholar 

  • de Vente J, Verduyn R, Verstraeten G et al (2011) Factors controlling sediment yield at the catchment scale in NW mediterranean geoecosystems. J Soils Sediments 11:690–707. https://doi.org/10.1007/s11368-011-0346-3

    Article  Google Scholar 

  • Demirci A, Karaburun A (2012) Estimation of soil erosion using RUSLE in a GIS framework: a case study in the Buyukcekmece Lake watershed, northwest Turkey. Environ Earth Sci 66:903–913. https://doi.org/10.1007/s12665-011-1300-9

    Article  Google Scholar 

  • Derakhshan-Babaei F, Nosrati K, Mirghaed FA, Egli M (2021) The interrelation between landform, land-use, erosion and soil quality in the Kan catchment of the Tehran province, central Iran. CATENA. 204:105412. https://doi.org/10.1016/j.catena.2021.105412

    Article  Google Scholar 

  • Didan K (2015) MYD13Q1 MODIS/Aqua Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. Version 6.1. NASA Washington, D.C., USA. Available online: https://earthexplorer.usgs.gov/. Accessed 1 Aug 2023

  • Dokan Dam Administration (2023) Dokan dam information. Unpublished report no 120. Sulaymaniyah, Iraq

  • Doulabian S, Shadmehri Toosi A, Humberto Calbimonte G et al (2021) Projected climate change impacts on soil erosion over Iran. J Hydrol. 598:126432. https://doi.org/10.1016/j.jhydrol.2021.126432

    Article  Google Scholar 

  • Dutta D, Das S, Kundu A, Taj A (2015) Soil erosion risk assessment in Sanjal watershed, Jharkhand (India) using geo-informatics, RUSLE model and TRMM data. Model Earth Syst Environ 1:37. https://doi.org/10.1007/s40808-015-0034-1

    Article  Google Scholar 

  • Ebrahimzadeh S, Motagh M, Mahboub V, Mirdar Harijani F (2018) An improved RUSLE/SDR model for the evaluation of soil erosion. Environ Earth Sci. https://doi.org/10.1007/s12665-018-7635-8

    Article  Google Scholar 

  • Efe R, Ekinci D, Curebal I (2008) Erosion analysis of Sahin creek watershed (NW of Turkey) using GIS based on Rusle (3d) method. J Appl Sci 8:49–58

    Article  Google Scholar 

  • ELC-Electroconsult, MED-Ingegneria, SGI – Studio Galli Ingegneria (2009) Dokan and Derbandikhan emergency hydropower project, final reservoirs topo-bathymetric report. Unpublished report no. DDR-3-ELC-R-1695.05/01B. Kurdistan Regional Government, Iraq, pp 37

  • ESRI (2021) ArcGIS Desktop: Release 10.8, CA: Environmental Systems Research Institute

  • Fallah M, Kavian A, Omidvar E (2016) Watershed prioritization in order to implement soil and water conservation practices. Environ Earth Sci 75:1248. https://doi.org/10.1007/s12665-016-6035-1

    Article  Google Scholar 

  • Fu BJ, Zhao WW, Chen LD et al (2005) Assessment of soil erosion at large watershed scale using RUSLE and GIS: a case study in the Loess Plateau of China. L Degrad Dev 16:73–85. https://doi.org/10.1002/ldr.646

    Article  Google Scholar 

  • Ganasri BP, Ramesh H (2016) Assessment of soil erosion by RUSLE model using remote sensing and GIS—a case study of Nethravathi Basin. Geosci Front 7:953–961. https://doi.org/10.1016/j.gsf.2015.10.007

    Article  Google Scholar 

  • George WM, Hotchkiss HR, Huffaker R (2017) Reservoir sustainability and sediment management. J Water Resour Plan Manag 143:4016077. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000720

    Article  Google Scholar 

  • Ghosh A, Rakshit S, Tikle S et al (2023) Integration of GIS and remote sensing with RUSLE model for estimation of soil erosion. Land. 12(1):116

    Article  Google Scholar 

  • GSFC-DAAC (2023) Tropical Rainfall Measurement Mission Project (TRMM ;3B43 V7). Available online: http://disc.gsfc.nasa.gov/datacollection/TRMM_3B42_daily_V6.shtml. Accessed 1 Aug 2023

  • Gwapedza D, Hughes DA, Slaughter AR, Mantel SK (2021) Temporal influences of vegetation cover (C) dynamism on MUSLE sediment yield estimates: NDVI evaluation. Water 13(19):2707. https://doi.org/10.3390/w13192707

    Article  Google Scholar 

  • Hamel P, Chaplin-Kramer R, Sim S, Mueller C (2015) A new approach to modeling the sediment retention service (InVEST 3.0): case study of the cape fear catchment, North Carolina, USA. Sci Total Environ. 524–525:166–177. https://doi.org/10.1016/j.scitotenv.2015.04.027

    Article  CAS  Google Scholar 

  • Hasan R, Ali A, Hazim A, et al (2019) Reduction in the storage capacity of Dokan Dam reservoir BT—advances in sustainable and environmental hydrology, hydrogeology, hydrochemistry and water resources. In: Chaminé HI, Barbieri M, Kisi O, et al. (eds). Springer International Publishing, Cham. pp 429–432

  • Hassan R, Al-Ansari N, Ali AA et al (2017) Bathymetry and siltation rate for Dokan reservoir, Iraq. Lakes Reserv Sci Policy Manag Sustain Use. 22:179–189. https://doi.org/10.1111/lre.12173

    Article  Google Scholar 

  • Huffman G, Bolvin D, Braithwaite D, et al (2014) Integrated Multi-satellitE Retrievals for GPM (IMERG) NASA’s Precipitation Processing Center. Available online: https://gpm.nasa.gov/data/imerg. Accessed 1 Aug 2023

  • Ijaz MA, Ashraf M, Hamid S et al (2022) Prediction of sediment yield in a data-scarce river catchment at the sub-basin scale using gridded precipitation datasets. Water 14:1480

    Article  Google Scholar 

  • Imamoglu A, Dengiz O (2017) Determination of soil erosion risk using RUSLE model and soil organic carbon loss in Alaca catchment (Central Black Sea region, Turkey). Rend Lincei 28:11–23. https://doi.org/10.1007/s12210-016-0556-0

    Article  Google Scholar 

  • İrvem A, Topaloğlu F, Uygur V (2007) Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. J Hydrol. 336:30–37. https://doi.org/10.1016/j.jhydrol.2006.12.009

    Article  Google Scholar 

  • Jayaprathiga M, Cibin R, Sudheer KP (2022) Reliability of hydrology and water quality simulations using global scale datasets. JAWRA J Am Water Resour Assoc. 58:453–470. https://doi.org/10.1111/1752-1688.13006

    Article  Google Scholar 

  • Jozaghi A, Alizadeh B, Hatami M et al (2018) A Comparative study of the AHP and TOPSIS techniques for dam site selection using GIS: a case study of Sistan and Baluchestan Province, Iran. Geosciences. https://doi.org/10.3390/geosciences8120494

    Article  Google Scholar 

  • Juracek KE (2015) The aging of America’s reservoirs: in-reservoir and downstream physical changes and habitat implications. JAWRA J Am Water Resour Assoc. 51:168–184. https://doi.org/10.1111/jawr.12238

    Article  Google Scholar 

  • Kandel S, Gyawali B, Shrestha S et al (2023) Estimation of runoff and sediment yield in response to temporal land cover change in Kentucky USA. Land. 12(1):147

    Article  Google Scholar 

  • Kerven GL, Menzies NW, Geyer MD (2000) Analytical methods and quality assurance. Commun Soil Sci Plant Anal 31:1935–1939. https://doi.org/10.1080/00103620009370551

    Article  CAS  Google Scholar 

  • Ketabchy M (2021) Investigating the impacts of the political system components in iran on the existing water Bankruptcy. Sustainability. 13:13657

    Article  Google Scholar 

  • Kuznetsov MS, Gendugov VM, Khalilov MS, Ivanuta AA (1998) An equation of soil detachment by flow. Soil Tillage Res. 46:97–102. https://doi.org/10.1016/S0167-1987(98)80111-6

    Article  Google Scholar 

  • Le Roux JJ (2018) Sediment yield potential in South Africa’s only large river network without a dam: implications for water resource management. L Degrad Dev. 29:765–775. https://doi.org/10.1002/ldr.2753

    Article  Google Scholar 

  • Leta MK, Waseem M, Rehman K, Tränckner J (2023) Sediment yield estimation and evaluating the best management practices in Nashe watershed, Blue Nile Basin. Ethiopia Environ Monit Assess 195:716. https://doi.org/10.1007/s10661-023-11337-z

    Article  Google Scholar 

  • Li Y, Qi S, Liang B et al (2019) Dangerous degree forecast of soil loss on highway slopes in mountainous areas of the Yunnan-Guizhou Plateau (China) using the revised universal soil loss equation. Nat Hazards Earth Syst Sci 19:757–774. https://doi.org/10.5194/nhess-19-757-2019

    Article  Google Scholar 

  • Li H, Guan Q, Sun Y et al (2022) Spatiotemporal analysis of the quantitative attribution of soil water erosion in the upper reaches of the Yellow River Basin based on the RUSLE-TLSD model. CATENA. 212:106081. https://doi.org/10.1016/j.catena.2022.106081

    Article  Google Scholar 

  • Liang S, Fang H (2021) Quantitative analysis of driving factors in soil erosion using geographic detectors in Qiantang River catchment, Southeast China. J Soils Sediments 21:134–147. https://doi.org/10.1007/s11368-020-02756-3

    Article  CAS  Google Scholar 

  • López-Vicente M, Lana-Renault N, García-Ruiz JM, Navas A (2011) Assessing the potential effect of different land cover management practices on sediment yield from an abandoned farmland catchment in the Spanish Pyrenees. J Soils Sediments 11:1440–1455. https://doi.org/10.1007/s11368-011-0428-2

    Article  Google Scholar 

  • López-Vicente M, Gómez JA, Guzmán G et al (2021) The role of cover crops in the loss of protected and non-protected soil organic carbon fractions due to water erosion in a Mediterranean olive grove. Soil Tillage Res. 213:105119. https://doi.org/10.1016/j.still.2021.105119

    Article  Google Scholar 

  • Lu H, Moran CJ, Prosser IP (2006) Modelling sediment delivery ratio over the Murray Darling Basin. Environ Model Softw. 21:1297–1308. https://doi.org/10.1016/j.envsoft.2005.04.021

    Article  Google Scholar 

  • Lufafa A, Tenywa MM, Isabirye M et al (2003) Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based Universal Soil Loss model. Agric Syst. 76:883–894. https://doi.org/10.1016/S0308-521X(02)00012-4

    Article  Google Scholar 

  • Majhi A, Shaw R, Mallick K, Patel PP (2021) Towards improved USLE-based soil erosion modelling in India: a review of prevalent pitfalls and implementation of exemplar methods. Earth-Science Rev. 221:103786. https://doi.org/10.1016/j.earscirev.2021.103786

    Article  Google Scholar 

  • Mehri A, Salmanmahiny A, Tabrizi ARM et al (2018) Investigation of likely effects of land use planning on reduction of soil erosion rate in river basins: case study of the Gharesoo River Basin. CATENA 167:116–129. https://doi.org/10.1016/j.catena.2018.04.026

    Article  Google Scholar 

  • Michalek A, Zarnaghsh A, Husic A (2021) Modeling linkages between erosion and connectivity in an urbanizing landscape. Sci Total Environ. 764:144255. https://doi.org/10.1016/j.scitotenv.2020.144255

    Article  CAS  Google Scholar 

  • Mirakhorlo MS, Rahimzadegan M (2020) Evaluating estimated sediment delivery by Revised Universal Soil Loss Equation (RUSLE) and Sediment Delivery Distributed (SEDD) in the Talar Watershed. Iran Front Earth Sci 14:50–62

    Article  Google Scholar 

  • Mohammad AG, Adam MA (2010) The impact of vegetative cover type on runoff and soil erosion under different land uses. CATENA. 81:97–103. https://doi.org/10.1016/j.catena.2010.01.008

    Article  Google Scholar 

  • Moore ID, Burch GJ (1986) Physical basis of the length-slope factor in the universal soil loss equation. Soil Sci Soc Am J 50:1294–1298. https://doi.org/10.2136/sssaj1986.03615995005000050042x

    Article  Google Scholar 

  • Mouris K, Schwindt S, Haun S et al (2022) Introducing seasonal snow memory into the RUSLE. J Soils Sediments 22:1609–1628. https://doi.org/10.1007/s11368-022-03192-1

    Article  Google Scholar 

  • Nachtergaele F, van Velthuizen H, van Engelen V, et al (2012) Harmonized World Soil Database (version 1.2). FAO, Rome, Italy IIASA, Laxenburg, Austria. pp 1–50.

  • NASA (2013) User guide for the MODIS land cover type product (MCD12Q1). NASA Washington, D.C., USA.pp 18. Available online: https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf

  • Obaid AK, Allen MB (2019) Landscape expressions of tectonics in the Zagros fold-and-thrust belt. Tectonophysics. 766(20):30

    Google Scholar 

  • Ostovari Y, Ghorbani-Dashtaki S, Bahrami H-A et al (2017) Soil loss estimation using RUSLE model, GIS and remote sensing techniques: a case study from the Dembecha Watershed Northwestern Ethiopia. Geoderma Reg. 11:28–36. https://doi.org/10.1016/j.geodrs.2017.06.003

    Article  Google Scholar 

  • Ostovari Y, Ghorbani-Dashtaki S, Kumar L, Shabani F (2019) Soil erodibility and its prediction in semi-arid regions. Arch Agron Soil Sci 65:1688–1703. https://doi.org/10.1080/03650340.2019.1575509

    Article  CAS  Google Scholar 

  • Othman AA, Gloaguen R (2013) Automatic extraction and size distribution of landslides in Kurdistan region NE Iraq. Remote Sens. 5(5):2389–2410

    Article  Google Scholar 

  • Othman AA, Al- Maamar AF, Al-Manmi DAM et al (2019) Application of DInSAR-PSI technology for deformation monitoring of the Mosul Dam Iraq. Remote Sens. 11(22):2632

    Article  Google Scholar 

  • Othman AA, Al-Maamar AF, Al-Manmi DAM et al (2020) GIS-based modeling for selection of dam sites in the Kurdistan Region Iraq. ISPRS Int J Geo-Inf. 9(4):244

    Article  Google Scholar 

  • Othman AA, Obaid AK, Amin Al-Manmi DAM et al (2021) New insight on soil loss estimation in the northwestern region of the Zagros fold and Thrust Belt. ISPRS Int J Geo-Inf 10:1–24. https://doi.org/10.3390/ijgi10020059

    Article  Google Scholar 

  • Othman AA, Obaid AK, Sissakian VK et al (2022) RUSLE Model in the Northwest Part of the Zagros Mountain Belt BT – Environmental Degradation in Asia: Land Degradation, Environmental Contamination, and Human Activities. In: Mustafa YT, Negm AM (eds) Al-Quraishi AMF. Springer International Publishing, Cham, pp 287–306

    Google Scholar 

  • Othman AA, Ali SS, Salar SG et al (2023) Insights for estimating and predicting reservoir sedimentation using the RUSLE-SDR approach: a case of Darbandikhan lake Basin Iraq-Iran. Remote Sens. 15(3):697

    Article  Google Scholar 

  • Ozcan AU, Erpul G, Basaran M, Erdogan HE (2008) Use of USLE/GIS technology integrated with geostatistics to assess soil erosion risk in different land uses of Indagi Mountain Pass—Çankırı, Turkey. Environ Geol 53:1731–1741. https://doi.org/10.1007/s00254-007-0779-6

    Article  Google Scholar 

  • Ozsoy G, Aksoy E (2015a) Prediction of soil loss differences and sediment accumulation at the Nilufer creek watershed, Turkey, using multiyear satellite data in a GIS. Geocarto Int 30:843–857. https://doi.org/10.1080/10106049.2014.997307

    Article  Google Scholar 

  • Ozsoy G, Aksoy E (2015b) Estimation of soil erosion risk within an important agricultural sub-watershed in Bursa, Turkey, in relation to rapid urbanization. Environ Monit Assess 187:419. https://doi.org/10.1007/s10661-015-4653-9

    Article  Google Scholar 

  • Ozsoy G, Aksoy E, Dirim MS, Tumsavas Z (2012) Determination of soil erosion risk in the Mustafakemalpasa river basin, Turkey, using the revised universal soil loss equation, geographic information system, and remote sensing. Environ Manage 50:679–694. https://doi.org/10.1007/s00267-012-9904-8

    Article  Google Scholar 

  • Panagos P, Katsoyiannis A (2019) Soil erosion modelling: the new challenges as the result of policy developments in Europe. Environ Res. 172:470–474. https://doi.org/10.1016/j.envres.2019.02.043

    Article  CAS  Google Scholar 

  • Panagos P, Meusburger K, Ballabio C et al (2014) Soil erodibility in Europe: a high-resolution dataset based on LUCAS. Sci Total Environ. 479–480:189–200. https://doi.org/10.1016/j.scitotenv.2014.02.010

    Article  CAS  Google Scholar 

  • Pandey S, Kumar P, Zlatic M et al (2021) Recent advances in assessment of soil erosion vulnerability in a watershed. Int Soil Water Conserv Res. 9:305–318. https://doi.org/10.1016/j.iswcr.2021.03.001

    Article  Google Scholar 

  • Phinzi K, Ngetar NS (2019) The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: a review. Int Soil Water Conserv Res. 7:27–46. https://doi.org/10.1016/j.iswcr.2018.12.002

    Article  Google Scholar 

  • Prasannakumar V, Shiny R, Geetha N, Vijith H (2011) Spatial prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: a case study of Siruvani river watershed in Attapady valley, Kerala, India. Environ Earth Sci 64:965–972. https://doi.org/10.1007/s12665-011-0913-3

    Article  Google Scholar 

  • QGIS Development Team (2023) QGIS Geographic Information System. Open Source Geospatial Foundation. Available online: http://qgis.org

  • Rajbanshi J, Bhattacharya S (2020) Assessment of soil erosion, sediment yield and basin specific controlling factors using RUSLE-SDR and PLSR approach in Konar river basin. India. J Hydrol. 587:124935. https://doi.org/10.1016/j.jhydrol.2020.124935

    Article  Google Scholar 

  • R-Core-Team (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Available online: https://www.R-project.org/

  • Renard KG, Freimund JR (1994) Using monthly precipitation data to estimate the R-factor in the revised USLE. J Hydrol. 157:287–306. https://doi.org/10.1016/0022-1694(94)90110-4

    Article  Google Scholar 

  • Renard KG, Foster GR, Weesies GA, Porter JP (1991) RUSLE: revised universal soil loss equation. J Soil Water Conserv 46:30–33

    Google Scholar 

  • Renard KG, Foster GR, Weesies GA, et al (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). United States Department of Agriculture Washington, DC.

  • Retalis A, Katsanos D, Tymvios F, Michaelides S (2020) Comparison of GPM IMERG and TRMM 3B43 products over Cyprus. Remote Sens. 12(19):3212

    Article  Google Scholar 

  • Rosas MA, Gutierrez RR (2020) Assessing soil erosion risk at national scale in developing countries: the technical challenges, a proposed methodology, and a case history. Sci Total Environ. 703:135474. https://doi.org/10.1016/j.scitotenv.2019.135474

    Article  CAS  Google Scholar 

  • Sadeghi SHR, Moatamednia M, Behzadfar M (2011) Spatial and Temporal Variations in the Rainfall ErosivityFactor in Iran TT. Mdrsjrns. 13:451–464

  • Saleh DK (2010) Stream Gage Descriptions and Streamflow Statistics for Sites in the Tigris River and Euphrates River Basins, Iraq. Virginia.

  • Salman QMK, Hamdan ANA (2023) Runoff estimation for the central region of the lesser Zab river watershed using the SCS-curve number method and GIS. J Ecol Eng. 24:232–245. https://doi.org/10.12911/22998993/167789

    Article  Google Scholar 

  • Sarp G (2020) Interaction between sediment transport rate and tectonic activity: the case of Kızılırmak Basin on the tectonically active NAFZ. Turkey Arab J Geosci 13:265. https://doi.org/10.1007/s12517-020-5240-0

    Article  Google Scholar 

  • Sedighi F, Khaledi Darvishan A, Zare MR (2021) Effect of watershed geomorphological characteristics on sediment redistribution. Geomorphology. 375:107559. https://doi.org/10.1016/j.geomorph.2020.107559

    Article  Google Scholar 

  • Sharda VN, Ojasvi PR (2016) A revised soil erosion budget for India: role of reservoir sedimentation and land-use protection measures. Earth Surf Process Landforms 41:2007–2023. https://doi.org/10.1002/esp.3965

    Article  Google Scholar 

  • Sharpley AN, Williams JR (1990) EPIC. Erosion/Productivity impact calculator: 1. Model documentation. 2. User manual. United States, Department of Agriculture; Agricultural Research Service. Technical Bulletin Number 1768. Available online: https://agrilife.org/epicapex/files/2015/05/EpicModelDocumentation.pdf

  • Sorkhabi O, Hajizadeh K, Rezaloo R (2022) The analysis of settlement patterns of iron age in Piranshahr Plain Relying on Geographic Information System (GIS). Interpretation 97:115

    Google Scholar 

  • Sun W, Shao Q, Liu J, Zhai J (2014) Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. CATENA. 121:151–163. https://doi.org/10.1016/j.catena.2014.05.009

    Article  Google Scholar 

  • Tanyaş H, Kolat Ç, Süzen ML (2015) A new approach to estimate cover-management factor of RUSLE and validation of RUSLE model in the watershed of Kartalkaya Dam. J Hydrol 528:584–598. https://doi.org/10.1016/j.jhydrol.2015.06.048

    Article  Google Scholar 

  • Terranova O, Antronico L, Coscarelli R, Iaquinta P (2009) Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology. 112:228–245. https://doi.org/10.1016/j.geomorph.2009.06.009

    Article  Google Scholar 

  • The-directorate-general-of-surveys (1957) Topographic maps scale of 1:20000; Baghdad-Iraq

  • Thornes JB (2007) Modelling soil erosion by grazing: recent developments and new approaches. Geogr Res 45:13–26. https://doi.org/10.1111/j.1745-5871.2007.00426.x

    Article  Google Scholar 

  • Toy TJ, Foster GR, Renard KG (1999) RUSLE for mining, construction and reclamation lands. J Soil Water Conserv 54:462–467

    Google Scholar 

  • Ustaoğlu B, İkiel C, Atalay Dutucu A, Koç DE (2021) Erosion susceptibility analysis in Datça and Bozburun Peninsulas, Turkey. Iran J Sci Technol Trans A Sci 45:557–570. https://doi.org/10.1007/s40995-020-01053-5

    Article  Google Scholar 

  • Vaezi AR, Sadeghi SHR (2011) Evaluating the RUSLE model and developing an empirical equation for estimating soil erodibility factor in a semi-arid region. Spanish J Agric Res 9:912–923

    Article  Google Scholar 

  • Vanoni Vito A (1975) Sedimentation engineering, manual and reports on engineering. American Society of Civil Engineers, New York

    Google Scholar 

  • Vigiak O, Borselli L, Newham LTH et al (2012) Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology. 138:74–88. https://doi.org/10.1016/j.geomorph.2011.08.026

    Article  Google Scholar 

  • Wan W, Liu Z, Li B et al (2022) Evaluating soil erosion by introducing crop residue cover and anthropogenic disturbance intensity into cropland C-factor calculation: novel estimations from a cropland-dominant region of Northeast China. Soil Tillage Res. 219:105343. https://doi.org/10.1016/j.still.2022.105343

    Article  Google Scholar 

  • Wen X, Deng X (2020) Current soil erosion assessment in the Loess Plateau of China: a mini-review. J Clean Prod. 276:123091. https://doi.org/10.1016/j.jclepro.2020.123091

    Article  Google Scholar 

  • Wischmeier, Smith (1978) Predicting rainfall erosion losses: a guide to conservation planning [USA]. United States. Dept. Agric. Agric. Handb.

  • Woznicki SA, Cada P, Wickham J et al (2020) Sediment retention by natural landscapes in the conterminous United States. Sci Total Environ. 745:140972. https://doi.org/10.1016/j.scitotenv.2020.140972

    Article  CAS  Google Scholar 

  • Xu Z, Zhang S, Zhou Y et al (2022) Characteristics of watershed dynamic sediment delivery based on improved RUSLE model. CATENA. 219:106602. https://doi.org/10.1016/j.catena.2022.106602

    Article  Google Scholar 

  • Yigez B, Xiong D, Zhang B et al (2021) Spatial distribution of soil erosion and sediment yield in the Koshi River Basin, Nepal: a case study of Triyuga watershed. J Soils Sediments 21:3888–3905. https://doi.org/10.1007/s11368-021-03023-9

    Article  Google Scholar 

  • Yigez B, Xiong D, Belete M et al (2022) Evaluation of multi-satellite precipitation products for soil loss and sediment export modeling over eastern regions of the Koshi River Basin. Nepal J Soils Sediments 22:2731–2749. https://doi.org/10.1007/s11368-022-03264-2

    Article  Google Scholar 

  • Yusof NF, Lihan T, Idris WMR et al (2021) Spatially distributed soil losses and sediment yield: a case study of Langat watershed, Selangor. Malaysia. J Asian Earth Sci. 212:104742. https://doi.org/10.1016/j.jseaes.2021.104742

    Article  Google Scholar 

  • Zabihi M, Sadeghi SH, Vafakhah M (2015) Spatial analysis of rainfall erosivity index patterns at different time scales in Iran. Watershed Eng Manag 7:442–457

    Google Scholar 

  • Zakeri E, Mousavi SA, Karimzadeh H (2020) Scenario-based modelling of soil conservation function by rangeland vegetation cover in northeastern Iran. Environ Earth Sci. https://doi.org/10.1007/s12665-020-8846-3

    Article  Google Scholar 

  • Zare M, Nazari Samani AA, Mohammady M et al (2017) Investigating effects of land use change scenarios on soil erosion using CLUE-s and RUSLE models. Int J Environ Sci Technol 14:1905–1918. https://doi.org/10.1007/s13762-017-1288-0

    Article  Google Scholar 

  • Zhao G, Mu X, Wen Z et al (2013) Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. L Degrad Dev. 24:499–510. https://doi.org/10.1002/ldr.2246

    Article  Google Scholar