References
-
Aggarwal, C. C., & Aggarwal, C. C. (2017). An introduction to outlier analysis (pp. 1–34). Springer International Publishing.
-
Alla, S., & Adari, S. K. (2019). Beginning anomaly detection using python-based deep learning. Apress.
-
Amiri, V., Nakhaei, M., Lak, R., & Li, P. (2021). An integrated statistical-graphical approach for the appraisal of the natural background levels of some major ions and potentially toxic elements in the groundwater of Urmia aquifer, Iran. Environmental Earth Sciences, 80(12), 432.
-
Anh, D. T., Pandey, M., Mishra, V. N., Singh, K. K., Ahmadi, K., Janizadeh, S., … & Dang, N. M. (2023). Assessment of groundwater potential modeling using support vector machine optimization based on Bayesian multi-objective hyperparameter algorithm. Applied Soft Computing, 132, 109848.
-
Audibert, J., Michiardi, P., Guyard, F., Marti, S., & Zuluaga, M. A. (2022). Do deep neural networks contribute to multivariate time series anomaly detection? Pattern Recognition, 132, 108945.
-
Azimi, S., Azhdary Moghaddam, M., & Hashemi Monfared, S. A. (2018). Anomaly detection and reliability analysis of groundwater by crude Monte Carlo and importance sampling approaches. Water Resources Management, 32, 4447–4467.
-
Bakx, W., Doornenbal, P. J., Van Weesep, R. J., Bense, V. F., Oude Essink, G. H., & Bierkens, M. F. (2019). Determining the relation between groundwater flow velocities and measured temperature differences using active heating-distributed temperature sensing. Water, 11(8), 1619.
-
Balasubaramanian, S., Cyriac, R., Roshan, S., Paramasivam, K. M., & Jose, B. C. (2023). An effective stacked autoencoder based depth separable convolutional neural network model for face mask detection. Array, 19, 100294.
-
Bengio, Y. (2012). Deep learning of representations for unsupervised and transfer learning. In Proceedings of ICML workshop on unsupervised and transfer learning (vol. 27, pp. 17–36).
-
Blázquez-García, A., Conde, A., Mori, U., & Lozano, J. A. (2021). A review on outlier/anomaly detection in time series data. ACM Computing Surveys (CSUR), 54(3), 1–33.
-
Chalapathy, R., & Chawla, S. (2019). Deep learning for anomaly detection: A survey. arXiv:1901.03407.
-
Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: a survey. ACM Computing Surveys (CSUR), 41(3), 1–58.
-
Cook, A. A., Mısırlı, G., & Fan, Z. (2019). Anomaly detection for IoT time-series data: a survey. IEEE Internet of Things Journal, 7(7), 6481–6494.
-
DeCastro-García, N., Castañeda, Á. L. M., & Fernández-Rodríguez, M. (2020, November). RADSSo: An automated tool for the multi-CASH machine learning problem. In International Conference on Hybrid Artificial Intelligence Systems (pp. 183–194). Cham: Springer International Publishing.
-
Duarte, D. P., Nogueira, R. N., & Bilro, L. B. (2019). Semi-supervised Gaussian and t-distribution hybrid mixture model for water leak detection. Measurement Science and Technology, 30(12), 125109.
-
Farahani, M. (2021). Anomaly detection on gas turbine time-series’ data using deep LSTM-autoencoder. Master’s thesis, Umeå University.
-
Feng, X., Zhong, J., Yan, R., Zhou, Z., Tian, L., Zhao, J., & Yuan, Z. (2022). Groundwater radon precursor anomalies identification by EMD-LSTM model. Water, 14(1), 69.
-
Finke, T., Krämer, M., Morandini, A., Mück, A., & Oleksiyuk, I. (2021). Autoencoders for unsupervised anomaly detection in high energy physics. Journal of High Energy Physics, 2021(6), 1–32.
-
Ghasemlounia, R., Gharehbaghi, A., Ahmadi, F., & Saadatnejadgharahassanlou, H. (2021). Developing a novel framework for forecasting groundwater level fluctuations using bi-directional long short-term memory (BiLSTM) deep neural network. Computers and Electronics in Agriculture, 191, 106568.
-
Goularas, D., & Kamis, S. (2019). Evaluation of deep learning techniques in sentiment analysis from Twitter data. In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML) (pp. 12–17). IEEE.
-
Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232.
-
Gu, J. (2016). Mathematical modeling of groundwater anomaly detection. Master’s thesis, Colorado State University.
-
Hill, D. J., Minsker, B. S., & Amir, E. (2009). Real‐time Bayesian anomaly detection in streaming environmental data. Water Resources Research, 45, W00D28.
-
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
-
Jeong, J., Park, E., Han, W. S., Kim, K., Choung, S., & Chung, I. M. (2017). Identifying outliers of non-Gaussian groundwater state data based on ensemble estimation for long-term trends. Journal of Hydrology, 548, 135–144.
-
Jeong, J., Park, E., Chen, H., Kim, K. Y., Han, W. S., & Suk, H. (2020). Estimation of groundwater level based on the robust training of recurrent neural networks using corrupted data. Journal of Hydrology, 582, 124512.
-
Kang, J., Kim, C. S., Kang, J. W., & Gwak, J. (2021). Anomaly detection of the brake operating unit on metro vehicles using a one-class LSTM autoencoder. Applied Sciences, 11(19), 9290.
-
Keesari, T., Ramakumar, K. L., Chidambaram, S., Pethperumal, S., & Thilagavathi, R. (2016). Understanding the hydrochemical behavior of groundwater and its suitability for drinking and agricultural purposes in Pondicherry area, South India–A step towards sustainable development. Groundwater for Sustainable Development, 2, 143–153.
-
Kim, Y., Jeong, J., Park, H., Kwon, M., Cho, C., & Jeong, J. (2022). Development of a data-driven ensemble regressor and its applicability for identifying contextual and collective outliers in groundwater level time-series data. Journal of Hydrology, 612, 128127.
-
Kim, D., Lindquist, W. B., & Peters, C. A. (2011). Upscaling geochemical reaction rates accompanying acidic CO2‐saturated brine flow in sandstone aquifers. Water Resources Research, 47, W01505.
-
Langevin, C. D., Thorne Jr, D. T., Dausman, A. M., Sukop, M. C., & Guo, W. (2008). SEAWAT version 4: a computer program for simulation of multi-species solute and heat transport. US Geological Survey Techniques and Methods Book 6, Ch A22.
-
Li, H., Son, J. H., Hanif, A., Gu, J., Dhanasekar, A., & Carlson, K. (2017). Colorado Water Watch: Real-time groundwater monitoring for possible contamination from oil and gas activities. Journal of Water Resource and Protection, 9(13), 1660.
-
Lindemann, B., Maschler, B., Sahlab, N., & Weyrich, M. (2021). A survey on anomaly detection for technical systems using LSTM networks. Computers in Industry, 131, 103498.
-
Liu, X., Wang, Z., & Zhang, X. (2016). A review of the green tides in the Yellow Sea, China. Marine Environmental Research, 119, 189–196.
-
Liu, J., Gu, J., Li, H., & Carlson, K. H. (2020a). Machine learning and transport simulations for groundwater anomaly detection. Journal of Computational and Applied Mathematics, 380, 112982.
-
Liu, J., Wang, P., Jiang, D., Nan, J., & Zhu, W. (2020b). An integrated data-driven framework for surface water quality anomaly detection and early warning. Journal of Cleaner Production, 251, 119145.
-
Maleki, S., Maleki, S., & Jennings, N. R. (2021). Unsupervised anomaly detection with LSTM autoencoders using statistical data-filtering. Applied Soft Computing, 108, 107443.
-
Maniyath, S. R., Pooja, G., Chandana, R., Namitha, K. S., & Lakshminarasamma, N. (2021, June). Groundwater anomaly detection using machine learning. In 2021 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C) (pp. 8–14). IEEE.
-
Mao, J., Wang, H., & Spencer, B. F., Jr. (2021). Toward data anomaly detection for automated structural health monitoring: Exploiting generative adversarial nets and autoencoders. Structural Health Monitoring, 20(4), 1609–1626.
-
Mikuni, V., & Nachman, B. (2023). High-dimensional and permutation invariant anomaly detection. Physics Review, D 106, 092009.
-
Mitiche, I., McGrail, T., Boreham, P., Nesbitt, A., & Morison, G. (2021). Data-driven anomaly detection in high-voltage transformer bushings with LSTM auto-encoder. Sensors, 21(21), 7426.
-
Moradi Vartouni, A., Teshnehlab, M., & Sedighian Kashi, S. (2019). Leveraging deep neural networks for anomaly-based web application firewall. IET Information Security, 13(4), 352–361.
-
Mulligan, A. E., Langevin, C., & Post, V. E. (2011). Tidal Boundary Conditions in SEAWAT. Groundwater, 49(6), 866–879.
-
Naddaf-Sh, S., Naddaf-Sh, M. M., Kashani, A. R., & Zargarzadeh, H. (2020, December). An efficient and scalable deep learning approach for road damage detection. In 2020 IEEE International Conference on Big Data (Big Data) (pp. 5602–5608). IEEE.
-
Nasiri, M., Moghaddam, H. K., & Hamidi, M. (2021). Development of multi-criteria decision making methods for reduction of seawater intrusion in coastal aquifers using SEAWAT code. Journal of Contaminant Hydrology, 242, 103848.
-
Nayyar, A., & Singh, R. (2015). A comprehensive review of simulation tools for wireless sensor networks (WSNs). Journal of Wireless Networking and Communications, 5(1), 19–47.
-
Nguyen, H. D., Tran, K. P., Thomassey, S., & Hamad, M. (2021). Forecasting and anomaly detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management. International Journal of Information Management, 57, 102282.
-
Nicholaus, I. T., Park, J. R., Jung, K., Lee, J. S., & Kang, D. K. (2021). Anomaly detection of water level using deep autoencoder. Sensors, 21(19), 6679.
-
Oppus, C., Guico, M. L., Monje, J. C., Domingo, M. A. L. G. A., Ngo, G., Retirado, M. G., & Kwong, J. C. (2020, October). Remote and real-time sensor system for groundwater level and quality. In 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE) (pp. 152–155). IEEE.
-
Panjehfouladgaran, A., & Rajabi, M. M. (2022). Contaminant source characterization in a coastal aquifer influenced by tidal forces and density-driven flow. Journal of Hydrology, 610, 127807.
-
Papastergios, G., Filippidis, A., Fernandez-Turiel, J. L., Gimeno, D., & Sikalidis, C. (2011). Surface soil geochemistry for environmental assessment in Kavala area, northern Greece. Water, Air, & Soil Pollution, 216, 141–152.
-
Rajabi, M. M., Komeilian, P., Wan, X., & Farmani, R. (2023). Leak detection and localization in water distribution networks using conditional deep convolutional generative adversarial networks. Water Research, 238, 120012.
-
Robinson, C., Li, L., & Barry, D. A. (2007). Effect of tidal forcing on a subterranean estuary. Advances in Water Resources, 30(4), 851–865.
-
Russo, S., Besmer, M. D., Blumensaat, F., Bouffard, D., Disch, A., Hammes, F., … & Villez, K. (2021). The value of human data annotation for machine learning based anomaly detection in environmental systems. Water Research, 206, 117695.
-
Sahin, A. U. (2016). A new parameter estimation procedure for pumping test analysis using a radial basis function collocation method. Environmental Earth Sciences, 75, 1–13.
-
Şahin, A. U., & Çiftçi, E. (2023). Cessation time approach incorporating parametric and non-parametric machine-learning algorithms for recovery test data. Hydrological Sciences Journal, 68(11), 1578–1590.
-
Sgueglia, A., Di Sorbo, A., Visaggio, C. A., & Canfora, G. (2022). A systematic literature review of IoT time series anomaly detection solutions. Future Generation Computer Systems, 134, 170–186.
-
Shaukat, K., Alam, T. M., Luo, S., Shabbir, S., Hameed, I. A., Li, J., … & Javed, U. (2021). A review of time-series anomaly detection techniques: A step to future perspectives. In Advances in information and communication: Proceedings of the 2021 Future of Information and Communication Conference (FICC), Volume 1 (pp. 865–877). Springer International Publishing.
-
Sherif, M., Kacimov, A., Javadi, A., & Ebraheem, A. A. (2012). Modeling groundwater flow and seawater intrusion in the coastal aquifer of Wadi Ham, UAE. Water Resources Management, 26, 751–774.
-
Song, Z., Lu, C., Zhang, Y., Chen, J., Liu, W., Liu, B., & Shu, L. (2022). Spatiotemporal distribution and statistical analysis of abnormal groundwater level rising in Poyang Lake basin. Water, 14(12), 1906.
-
Tornyeviadzi, H. M., Mohammed, H., & Seidu, R. (2023). Semi-supervised anomaly detection methods for leakage identification in water distribution networks: a comparative study. Machine Learning with Applications, 14, 100501.
-
Veena, S., Mahesh, K., Rajesh, M., & Salmon, S. (2018). The survey on smart agriculture using IOT. International Journal of Innovative Research in Engineering (IJRIREM), 5(2), 63–66.
-
Wei, Y., Jang-Jaccard, J., Xu, W., Sabrina, F., Camtepe, S., & Boulic, M. (2023). LSTM-autoencoder-based anomaly detection for indoor air quality time-series data. IEEE Sensors Journal, 23(4), 3787–3800.
-
Xintong, G., Hongzhi, W., Song, Y., & Hong, G. (2014). Brief survey of crowdsourcing for data mining. Expert Systems with Applications, 41(17), 7987–7994.
-
Zaib Jadoon, K., Zeeshan Ali, M., Yousafzai, H. U. K., Rehman, K. U., Shah, J. A., & Shiekh, N. A. (2023, May). Smart groundwater monitoring system for managed aquifer recharge based on enabled real-time internet of things. In EGU General assembly conference abstracts (pp. EGU-12909).