algal-nanobiofertilizers:-prospects-and-challenges-–-springer

Algal Nanobiofertilizers: Prospects and Challenges – Springer

References

  • Abdelghany AM, El-Banna AA, Salama EA, Ali MM, Al-Huqail AA, Ali HM, Paszt LS, El-Sorady GA, Lamlom SF (2022) The individual and combined effect of nanoparticles and biofertilizers on growth, yield, and biochemical attributes of peanuts (Arachis hypogea L.). Agronomy 12(2):398

  • Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM, Alharbi RM, Alkhulaifi MM (2019) Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization. Saudi J Biol Sci 26(6):1207–1215

  • Aguirre-Becerra H, Feregrino-Perez AA, Esquivel K, Perez-Garcia CE, Vazquez-Hernandez MC, Mariana-Alvarado A (2022) Nanomaterials as an alternative to increase plant resistance to abiotic stresses. Front Plant Sci 13:1023636

  • Ahmadi FS, Tanhaeian A, Pirkohi MH (2016) Biosynthesis of silver nanoparticles using Chlamydomonas reinhardtii and its inhibitory effect on growth and virulence of Listeria monocytogenes. Iran J Biotechnol 14(3):163

  • Ahmed T, Noman M, Manzoor N, Shahid M, Abdullah M, Ali L, Wang G. Hashem A, Al-Arjani ABF, Alqarawi AA, Abd_Allah EF, 2021. Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress-responsive genetic mechanisms and nutrient acquisition. Ecotoxicology and Environmental Safety, 209, p.111829.

  • Alam MA, Xu JL, Wang Z (eds) (2020) Microalgae biotechnology for food, health and high value products. Springer, Singapore

  • Ali DM, Sasikala M, Gunasekaran M, Thajuddin N (2011) Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Dig J Nanomater Biostruct 6(2):385–390

  • Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (‘Solanum lycopersicum ‘L.) seedlings under salt stress. Plant Omics 9(1), pp.106–114

  • Ammar EE, Aioub AA, Elesawy AE, Karkour AM, Mouhamed MS, Amer AA, El-Shershaby NA (2022) Algae as bio-fertilizers: between current situation and future prospective Saudi. J Biol Sci 29(5):3083–3096

  • Annamalai J, Nallamuthu T (2015) Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Appl Nanosci 5:603–607

  • Aravindan D, Azeez R, Nallamuthu T (2014) Biosynthesis of silver nanoparticles using two seaweeds and their potential towards environment. Nano Biomed Eng 6(4):94–103

  • Ashkavand P, Tabari M, Zarafshar M, Tomaskova I, Struve D (2015) Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. Leśne Pr Badaw 76(4):350

  • Asimakis E, Shehata AA, Eisenreich W, Acheuk F, Lasram S, Basiouni S, Emekci M, Ntougias S, Taner G, May-Simera H, Yilmaz M (2022) Algae and their metabolites as potential bio-pesticides. Microorganisms 10(2):307

  • Ayub MA, Naeem A, Rehman MZ, Farooqi ZUR, Umar W, Fatima H, Nadeem M, Shabaan M (2022) Role of nanotechnology in enhancing crop production and produce quality. In: Sustainable nanotechnology for environmental remediation. Elsevier, pp 703–764

  • Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277

  • Bakir EM, Younis NS, Mohamed ME, El Semary NA (2018) Cyanobacteria as nanogold factories: chemical and anti-myocardial infarction properties of gold nanoparticles synthesized by Lyngbya majuscula. Mar Drugs 16(6):217

  • Beetul K, Gopeechund A, Kaullysing D (2016) Challenges and opportunities in the present era of marine algal applications. In: Thajuddin N, Dhanasekaran D (eds) Algae-organisms for imminent biotechnology. IntechOpen, pp 237–276

  • Behera M, Behera PR, Bhuyan PP, Singh L, Pradhan B (2023) Algal nanoparticles and their antibacterial activity: current research status and future prospectives. Drugs Drug Candid 2(3):554–570

  • Cao Z, Stowers C, Rossi L, Zhang W, Lombardini L, Ma X (2017) Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.). Environmental Science: Nano 4(5), pp.1086–1094.

  • Chan SS, Low SS, Chew KW, Ling TC, Rinklebe J, Juan JC, Ng EP, Show PL (2022) Prospects and environmental sustainability of phyconanotechnology: a review on algae-mediated metal nanoparticles synthesis and mechanism. Environ Res 212:113140

  • Chhipa H, Joshi P (2016) Nanofertilisers, nanopesticides and nanosensors in agriculture. In: Nanoscience in food and agriculture, vol 1. Springer, pp 247–282

  • Chojnacka K, Moustakas K, Witek-Krowiak A (2020) Bio-based fertilizers: a practical approach towards circular economy. Bioresour Technol 295:122223

  • Dahoumane SA, Djediat C, Yepremian C, Coute A, Fievet F, Coradin T, Brayner R (2012) Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnol Bioeng 109(1):284–288

  • Dahoumane SA, Yéprémian C, Djédiat C, Couté A, Fiévet F, Coradin T, Brayner R (2014) A global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae. J Naopart Res 16:1–12

  • Das A, Ray R, Mandal N, Chakrabarti K (2016) An analysis of transcripts and enzyme profiles in drought-stressed jute (Corchorus capsularis) and rice (Oryza sativa) seedlings treated with CaCl2, hydroxyapatite nano-particle and β-amino butyric acid. Plant Growth Regul 79:401–412

  • Davey MC, Clarke KJ (1991) The spatial distribution of microalgae on Antarctic fellfield soils. Antarct Sci 3(3):257–263

  • Djanaguiraman M, Nair R, Giraldo JP, Prasad PVV (2018) Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS Omega 3(10):14406–14416

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

  • El-Ghamry AM, Mosa AA, Alshaal TA, El-Ramady HR (2018) Nanofertilizers vs. biofertilizers: new insights. Environ Biodivers Soil Secur 2:51–72

  • Elsheery NI, Helaly MN, El-Hoseiny HM, Alam-Eldein SM (2020) Zinc oxide and silicon nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy 10(4):558

  • Elster J (2002) Ecological classification of terrestrial algal communities in polar environments: dedicated to professor Josef Svoboda on the occasion of his 70th birthday. In: Geoecology of Antarctic ice-free coastal landscapes. Springer, pp 303–326

  • Elumalai S, Santhose BI, Devika R, Revathy S (2013) Collection, isolation, identification, and biosynthesis of silver nanoparticles using microalga Chlorella pyrenoidosa. Nanosci Technol 4(1):59

  • FAO (2018) The future of food and agriculture: alternative pathways to 2050. Food and Agriculture Organization of the United Nations, Rome

  • Fatima R, Priya M, Indurthi L, Radhakrishnan V, Sudhakaran R (2020) Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microb Pathog 138:103780

  • Gantar M (2000) Mechanical damage of roots provides enhanced colonization of the wheat endo rhizosphere by the dinitrogen-fixing cyanobacterium Nostoc sp. strain 2S9B. In: Biology and fertility of soils. Springer, pp 250–255

  • Gantar M, Elhai J (1999) Colonization of wheat para-nodules by the N2-fixing cyanobacterium Nostoc sp. strain 2S9B. New Phytol 141(3):373–379

  • Gilaki M (2010) Biosynthesis of silver nanoparticles using plant extracts. J Biol Sci 10(5):465–467

  • Govindaraju K, Krishnamoorthy K, Alsagaby SA, Singaravelu G, Premanathan M (2015) Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnol 9(6):325–330

  • Haider MJ, Mehdi MS (2014) Study of morphology and zeta potential analyzer for the silver nanoparticles. Int J Sci Eng Res 5(7):381–387

  • Hamouda R, Abd El-Mongy M, Eid KF (2018) Antibacterial activity of silver nanoparticles using Ulva fasciata extracts as reducing agent and sodium dodecyl sulfate as stabilizer. Int J Pharmacol 14(3):359–368

  • Hernández-Hernández H, González-Morales S, Benavides-Mendoza A, Ortega-Ortiz H, Cadenas-Pliego G, Juárez-Maldonado A (2018) Effects of chitosan–PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules, 23(1), p.178

  • Husain S, Sardar M, Fatma T (2015) Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World J Microbiol Biotechnol 31:1279–1283

  • Ishwarya R, Vaseeharan B, Kalyani S, Banumathi B, Govindarajan M, Alharbi NS, Kadaikunnan S, Al-Anbr MN, Khaled JM, Benelli G (2018) Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluating their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol B Biol 178:249–258

  • Jaberzadeh A, Moaveni P, Moghadam HRT, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Horti Agrobot Cluj Napoca 1:201–207

  • Jacob RH, Shanab SM, Shalaby EA (2021) Algal biomass nanoparticles: chemical characteristics, biological actions, and applications. Biomass Convers Biorefinery 13:1–15

  • Kannan RRR, Stirk WA, Van Staden J (2013) Synthesis of silver nanoparticles using the seaweed Codium capitatum PC Silva (Chlorophyceae). S Afr J Bot 86:1–4

  • Khan F, Shahid A, Zhu H, Wang N, Javed MR, Ahmad N, Xu J, Alam MA, Mehmood MA (2022) Prospects of algae-based green synthesis of nanoparticles for environmental applications. Chemosphere 293:133571

  • Khanna P, Kaur A, Goyal D (2019) Algae-based metallic nanoparticles: synthesis, characterization and applications. J Microbiol Methods 163:105656

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101

  • Kokabi M, Yousefzadi M (2015) Checklist of the marine macroalgae of Iran. Bot Mar 58(4):307–320

  • Krug L, Erlacher A, Markut K, Berg G, Cernava T (2020) The microbiome of alpine snow algae shows a specific inter-kingdom connectivity and algae-bacteria interactions with supportive capacities. ISME J 14(9):2197–2210

  • Kumawat KC, Razdan N, Saharan K (2022) Rhizospheric microbiome: bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol Res 254:126901

  • Laware SL, Raskar S (2014) Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. Int. J. Curr. Microbiol. App. Sci 3(7), pp.749–760

  • Leach JE, Triplett LR, Argueso CT, Trivedi P (2017) Communication in the phytobiome. Cell 169(4):587–596

  • Lee SM, Ryu CM (2021) Algae as new kids in the beneficial plant microbiome. Front Plant Sci 12:599742

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)−chloride complex. Environ Sci Technol 40(20):6304–6309

  • LewisOscar F, Vismaya S, Arunkumar M, Thajuddin N, Dhanasekaran D, Nithya C (2016) Algal nanoparticles: synthesis and biotechnological potentials. In: Algae-organisms for imminent biotechnology, vol 7. IntechOpen, pp 157–182

  • Li R, Tao R, Ling N, Chu G (2017) Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: implications for soil biological quality. Soil Tillage Res 167:30–38

  • Liu J, Chen F (2016) Biology and industrial applications of Chlorella: advances and prospects. Adv Biochem Eng Biotechnol 153:1–35

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

  • Mahapatra DM, Satapathy KC, Panda B (2022) Biofertilizers and nanofertilizers for sustainable agriculture: phycoprospects and challenges. Sci Total Environ 803:149990

  • Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964

  • Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29(1):1–13

  • Mary XA, Mathuran T, Saji M, Kumar SA (2015) In-vitro germination effect of biologically synthesized silver nanoparticles from Sargassum plagiophyllum on Arachis hypogaea, Vigna mungo, and Vigna radiate. IRJNAS 12:278–284

  • Michael A, Singh A, Roy A, Islam MR (2022) Fungal-and algal-derived synthesis of various nanoparticles and their applications. Bioinorg Chem Appl 2022:1

  • Mohammadi R, Maali-Amiri R, Abbasi A (2013) Effect of TiO 2 nanoparticles on chickpea response to cold stress. Biological trace element research, 152, pp.403-410.

  • Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D (2011) Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. Bio Impacts 1(3):149

  • Nahvi I, Belkahla S, Asiri SM, Rehman S (2021) Overview and prospectus of algal biogenesis of nanoparticles. In: Microbial nanotechnology: green synthesis and applications. Springer, pp 121–134

  • Namvar F, Azizi S, Ahmad MB, Shameli K, Mohamad R, Mahdavi M, Tahir PM (2015) Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Res Chem Inter 41:5723–5730

  • Parial D, Patra HK, Dasgupta AK, Pal R (2012) Screening of different algae for green synthesis of gold nanoparticles. Eur J Pharmacol 47(1):22–29

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

  • Rajesh S, Raja DP, Rathi JM, Sahayaraj K (2012) Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. alvacearum. J Biopest 5:119

  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Fron Chem 5:78

  • Riaz U, Murtaza G, Anum W, Samreen T, Sarfraz M, Nazir MZ (2021) Plant Growth-Promoting Rhizobacteria (PGPR) as biofertilizers and biopesticides. In: Microbiota and biofertilizers: a sustainable continuum for plant and soil health. Springer, pp 181–196

  • Rossi L, Zhang W, Lombardini L, Ma X, (2016) The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environmental Pollution 219:28–36

  • Roy S, Anantharaman P (2017) Biosynthesis of silver nanoparticles by Chaetomorpha antennina (Bory de Saint-Vincent) Kutzing with its antibacterial activity and ecological implication. J Nanomed Nanotechnol 8(467):2

  • Roy S, Anantharaman P (2018) Biosynthesis of silver nanoparticles by Sargassum Ilicifolium (Turner) C. Agardh with their antimicrobial activity and potential for seed germination, p 2

  • Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 199:344–370

  • Sambangi P, Gopalakrishnan S, Pebam M, Rengan AK (2022) Nano-biofertilizers on soil health, chemistry, and microbial community: benefits and risks. Proc Indian Natl Sci Acad 88(3):357–368

  • Sarraf M, Vishwakarma K, Kumar V, Arif N, Das S, Johnson R, Janeeshma E, Puthur JT, Aliniaeifard S, Chauhan DK, Fujita M (2022) Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: an overview of the mechanisms. Plan Theory 11(3):316

  • Schneidewind H, Schuler T, Strelau KK, Weber K, Cialla D, Diegel M, Mattheis R, Berger A, Möller R, Popp J (2012) The morphology of silver nanoparticles prepared by enzyme-induced reduction. Beilstein J Nanotechnol 3(1):404–414

  • Schröfel A, Kratošová G, Bohunicka M, Dobrocka E, Vávra I (2011) Biosynthesis of gold nanoparticles using diatoms—silica-gold and EPS-gold bionanocomposite formation. J Nanopart Res 13:3207–3216

  • Selvaraj P, Neethu E, Rathika P, Jayaseeli JPR, Jermy BR, Abdul Azeez S, Borgio JF, Dhas TS (2020) Antibacterial potentials of methanolic extract and silver nanoparticles from marine algae. Biocatal Agric Biotechnol 28:101719

  • Sharma G, Jasuja ND, Kumar M, Ali MI (2015) Biological synthesis of silver nanoparticles by cell-free extract of Spirulina platensis. J Nanotechnol 2015:1–6

  • Sharma A, Sharma S, Sharma K, Chetri SP, Vashishtha A, Singh P, Kumar R, Rathi B, Agrawal V (2016) Algae as crucial organisms in advancing nanotechnology: a systematic review. J Appl Phycol 28:1759–1774

  • Sharma G, Pandey S, Ghatak S, Watal G, Rai PK (2018) Potential of spectroscopic techniques in the characterization of “green nanomaterials”. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, In, pp 59–77

  • Sharma B, Tiwari S, Kumawat KC, Cardinale M (2023) Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: potentiality and their limitations. Sci Total Environ 860:160476

  • Sheeba JM, Thambidurai S (2009) Extraction, characterization, and application of seaweed nanoparticles on cotton fabrics. J Appl Polym Sci 113(4):2287–2292

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227

  • Singaravelu G, Arockiamary J, Ganesh K, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 57:97–101

  • Singh MD (2017) Nano-fertilizers is a new way to increase nutrients use efficiency in crop production. IJAS ISSN 9(7):0975–3710

  • Singh JS, Kumar A, Singh M (2019) Cyanobacteria: a sustainable and commercial bio-resource in production of bio-fertilizer and bio-fuel from waste waters. Environ Sustain 3-4:100008

  • Soleimani M, Habibi-Pirkoohi M (2017) Biosynthesis of silver nanoparticles using Chlorella vulgaris and evaluation of the antibacterial efficacy against Staphylococcus aureus. Avicenna J Med Biotechnol 9(3):120

  • Subramaniyam V, Subashchandrabose SR, Thavamani P, Megharaj M, Chen Z, Naidu R (2015) Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol 27:1861–1869

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262

  • Thirugnanasambandan T (2019) Advances and trends in nano-biofertilizers. SSRN:59

  • Treves H, Raanan H, Kedem I, Murik O, Keren N, Zer H, Berkowicz SM, Giordano M, Norici A, Shotland Y, Ohad I (2016) The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance. New Phytol 210(4):1229–1243

  • Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, ur Rehman H, Ashraf I, Sanaullah M (2020) Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ 721:137778

  • Van Nguyen D, Nguyen HM, Le NT, Nguyen KH, Nguyen, HT, Le HM, Nguyen AT, Dinh NTT, Hoang SA, Van Ha C (2021) Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. Journal of Plant Growth Regulation, pp.1–12

  • Verma KK, Song XP, Joshi A, Tian DD, Rajput VD, Singh M, Arora J, Minkina T, Li YR (2022) Recent trends in nano-fertilizers for sustainable agriculture under climate change for global food security. Nanomater 12(1):173

  • Vivek M, Kumar PS, Steff S, Sudha S (2011) Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J Med Biotechnol 3(3):143

  • Xie J, Lee JY, Wang DI, Ting YP (2007) Identification of active biomolecules in the highyield synthesis of single crystalline gold nanoplates in algal solutions. Small 3(4):672–682

  • Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y, Liu X, Fan G, Tang J, Coletta-Filho HD, Cubero J (2018) The structure and function of the global citrus rhizosphere microbiome. Nat Commun 9(1):4894

  • Zhu H, Li S, Hu Z, Liu G (2018) Molecular characterization of eukaryotic algal communities in the tropical phyllosphere based on real-time sequencing of the 18S rDNA gene. BMC Plant Biol 18(1):1–14

  • Zou Y, Zeng Q, Li H, Liu H, Lu Q (2021) Emerging technologies of algae based wastewater remediation for biofertilizer production: a promising pathway to sustainable agriculture. J Chem Technol Biotechnol 96(3):551–563

  • Zulfiqar F, Ashraf M (2021) Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol Biochem 160:257–268

Download references