decorated-with-carbon-nanofibers-for-enhanced-electrochemical-detection-of-bisphenol-a-in-food-products-–-springer

decorated with carbon nanofibers for enhanced electrochemical detection of bisphenol A in food products – Springer

  • Sun F, Kang L, Xiang X et al (2016) Recent advances and progress in the detection of bisphenol A. Anal Bioanal Chem 408:6913–6927

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wu X, Liu Y et al (2022) The curing characteristics and properties of bisphenol A epoxy resin/maleopimaric acid curing system. J Mater Res Technol 21:1655–1665. https://doi.org/10.1016/j.jmrt.2022.10.008

    Article  CAS  Google Scholar 

  • Jala A, Varghese B, Dutta R et al (2022) Levels of parabens and bisphenols in personal care products and urinary concentrations in Indian young adult women: Implications for human exposure and health risk assessment. Chemosphere 297:134028. https://doi.org/10.1016/j.chemosphere.2022.134028

    Article  CAS  PubMed  Google Scholar 

  • Parto M, Aazami J, Shamsi Z et al (2022) Determination of bisphenol-A in plastic bottled water in markets of Zanjan, Iran. Int J Environ Sci Technol 19:3337–3344. https://doi.org/10.1007/s13762-021-03488-8

    Article  CAS  Google Scholar 

  • Siddique S, Zhang G, Coleman K, Kubwabo C (2021) Investigation of the migration of bisphenols from baby bottles and sippy cups. Curr Res Food Sci 4:619–626. https://doi.org/10.1016/j.crfs.2021.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuković GL, Đukić MR, Stojanović TN et al (2019) Determination of bisphenol A in baby bottles and drinking containers by high liquid chromatography. Acta Period Technol 50:332–337. https://doi.org/10.2298/APT1950332V

    Article  Google Scholar 

  • Kumar A, Singh D, Bhandari R et al (2023) Bisphenol A in canned soft drinks, plastic-bottled water, and household water tank from Punjab, India. J Hazard Mater Adv 9:100205. https://doi.org/10.1016/j.hazadv.2022.100205

    Article  CAS  Google Scholar 

  • Kesavan G, Nataraj N, Chen SM, Lin LH (2020) Hydrothermal synthesis of NiFe2O4 nanoparticles as an efficient electrocatalyst for the electrochemical detection of bisphenol A. New J Chem 44:7698–7707. https://doi.org/10.1039/D0NJ00608D

    Article  CAS  Google Scholar 

  • Rodriguez R, Castillo E, Sinuco D (2019) Validation of an HPLC method for determination of bisphenol-A migration from baby feeding bottles. J Anal Methods Chem. https://doi.org/10.1155/2019/1989042

  • Vilarinho F, Lestido-Cardama A, Sendón R et al (2020) HPLC with fluorescence detection for determination of bisphenol a in canned vegetables: optimization, validation and application to samples from portuguese and Spanish markets. Coatings 10:624. https://doi.org/10.3390/coatings10070624

    Article  CAS  Google Scholar 

  • Watabe Y, Hosoya K, Tanaka N et al (2005) LC/MS determination of bisphenol A in river water using a surface-modified molecularly-imprinted polymer as an on-line pretreatment device. Anal Bioanal Chem 381:1193–1198. https://doi.org/10.1007/s00216-004-3031-1

    Article  CAS  PubMed  Google Scholar 

  • Sajiki J (2001) Determination of bisphenol A in blood using high-performance liquid chromatography-electrochemical detection with solid-phase extraction

  • Lin PY, Hsieh CW, Hsieh S (2017) Rapid and sensitive SERS detection of bisphenol A using self-assembled graphitic substrates. Sci Rep 7:16698. https://doi.org/10.1038/s41598-017-17030-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng W, Duan W, Shi Y et al (2018) Sensitive detection of bisphenol A in drinking water and river water using an upconversion nanoparticles-based fluorescence immunoassay in combination with magnetic separation. Anal Methods 10:5313–5320. https://doi.org/10.1039/c8ay01260a

    Article  CAS  Google Scholar 

  • Jia M, Xu F, Zhai F et al (2024) An all-in-one portable colorimetric detection platform for sensitive detection of bisphenol A based on target-mediated CeO2@ZIF-8/Apt biocomposites. J Colloid Interface Sci 653:1805–1816. https://doi.org/10.1016/j.jcis.2023.10.055

    Article  CAS  PubMed  Google Scholar 

  • Yi J, Li X, Lv S et al (2023) MOF-derived CeO2/Co3O4–Fe2O3@CC nanocomposites as highly sensitive electrochemical sensor for bisphenol A detection. Chemosphere 336:139249. https://doi.org/10.1016/j.chemosphere.2023.139249

    Article  CAS  PubMed  Google Scholar 

  • Dubey M, Mathur A, Kumar R (2022) Enhanced bisphenol A sensing in water using 1-D H exchanged -MnO-based impedimetric sensor. IEEE Sens J 22:20193–20199. https://doi.org/10.1109/JSEN.2022.3207481

    Article  CAS  Google Scholar 

  • Buledi JA, Shaikh H, Solangi AR et al (2023) Synthesis of NiO-doped ZnO nanoparticle-decorated reduced graphene oxide nanohybrid for highly sensitive and selective electrochemical sensing of bisphenol A in aqueous samples. Ind Eng Chem Res 62:4754–4764. https://doi.org/10.1021/acs.iecr.2c04091

    Article  CAS  Google Scholar 

  • Liu Y-H, Liu C, Wang X-H et al (2023) Electrochemical sensor for sensitive detection of bisphenol A based on molecularly imprinted TiO2 with oxygen vacancy. Biosens Bioelectron 237:115520. https://doi.org/10.1016/j.bios.2023.115520

    Article  CAS  PubMed  Google Scholar 

  • Thukkaram MP, Chakravorty A, Mini AA et al (2023) Titanium carbide MXene and V2O5 composite-based electrochemical sensor for detection of bisphenol A. Microchem J 193:109004. https://doi.org/10.1016/j.microc.2023.109004

    Article  CAS  Google Scholar 

  • Zhou Y, She X, Wu Q et al (2022) Monoclinic WO3 nanosheets-carbon nanotubes nanocomposite based electrochemical sensor for sensitive detection of bisphenol A. J Electroanal Chem 915:116355. https://doi.org/10.1016/j.jelechem.2022.116355

    Article  CAS  Google Scholar 

  • Wang KP, Hu JM, Zhang X (2022) Sensitive electrochemical detection of endocrine disruptor bisphenol A (BPA) in milk based on iodine-doped graphene. Microchem J 173. https://doi.org/10.1016/j.microc.2021.107047

  • Zha A-Y, Zha Q-B, Li Z et al Surfactant-enhanced electrochemical detection of bisphenol A based on Au on ZnO/reduced graphene oxide sensor. Rare Metals 42(4):1274–1282. https://doi.org/10.1007/s12598

  • Lei Y, Zhang Y, Wang B et al (2022) A lab-on-injector device with Au nanodots confined in carbon nanofibers for in situ electrochemical BPA sensing in beverages. Food Control 134. https://doi.org/10.1016/j.foodcont.2021.108747

  • Zhang Y, Chang B, Yang Q et al (2022) A sensitive electrochemical sensor based on La-SnO2 NF/CNTs modified glass carbon electrode for bisphenol A detection. Mater Lett:327. https://doi.org/10.1016/j.matlet.2022.133005

  • Sanko V, Şenocak A, Tümay SO et al (2022) An electrochemical sensor for detection of trace-level endocrine disruptor bisphenol A using Mo2Ti2AlC3 MAX phase/MWCNT composite modified electrode. Environ Res 212. https://doi.org/10.1016/j.envres.2022.113071

  • Marchiandi J, Alghamdi W, Dagnino S et al (2024) Exposure to endocrine disrupting chemicals from beverage packaging materials and risk assessment for consumers. J Hazard Mater 465. https://doi.org/10.1016/j.jhazmat.2023.133314

  • Kim D, Kwak J Il, An Y-J (2018) Effects of bisphenol A in soil on growth, photosynthesis activity, and genistein levels in crop plants (Vigna radiata). Chemosphere 209:875–882. https://doi.org/10.1016/j.chemosphere.2018.06.146

  • Xu Y, Hu A, Li Y et al (2021) Determination and occurrence of bisphenol A and thirteen structural analogs in soil. Chemosphere 277:130232. https://doi.org/10.1016/j.chemosphere.2021.130232

    Article  CAS  PubMed  Google Scholar 

  • Gibson R, Durán-Álvarez JC, Estrada KL et al (2010) Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere 81:1437–1445. https://doi.org/10.1016/j.chemosphere.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  • Staples C, Friederich URS, Hall T et al (2010) Estimating potential risks to terrestrial invertebrates and plants exposed to bisphenol a in soil amended with activated sludge biosolids. Environ Toxicol Chem 29:467–475. https://doi.org/10.1002/etc.49

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty P, Sampath S, Mukhopadhyay M et al (2019) Baseline investigation on plasticizers, bisphenol A, polycyclic aromatic hydrocarbons and heavy metals in the surface soil of the informal electronic waste recycling workshops and nearby open dumpsites in Indian metropolitan cities. Environ Pollut 248:1036–1045. https://doi.org/10.1016/j.envpol.2018.11.010

    Article  CAS  PubMed  Google Scholar 

  • Verma D, Chauhan D, Das Mukherjee M et al (2021) Development of MWCNT decorated with green synthesized AgNps-based electrochemical sensor for highly sensitive detection of BPA. J Appl Electrochem 51:447–462. https://doi.org/10.1007/s10800-020-01511-3

    Article  CAS  Google Scholar 

  • Chen J, Huang X, Ye R et al (2022) Fabrication of a novel electrochemical sensor using conductive MOF Cu-CAT anchored on reduced graphene oxide for BPA detection. J Appl Electrochem 52:1617–1628. https://doi.org/10.1007/s10800-022-01735-5

    Article  CAS  Google Scholar 

  • Amiri M, Mahmoudi-Moghaddam H (2021) Green synthesis of ZnO/ZnCo2O4 and its application for electrochemical determination of bisphenol A. Microchem J 160. https://doi.org/10.1016/j.microc.2020.105663

  • Singh A, Singh A, Verma A et al (2023) Economic ZnCo2O4 nanoflakes chemiresistor assisted room-temperature monitoring of low trace airborne ammonia. ECS J Solid State Sci Technol 12:047005. https://doi.org/10.1149/2162-8777/acccaf

    Article  Google Scholar 

  • Dai M, Liu H, Zhao D et al (2021) Ni foam substrates modified with a ZnCo2O4 nanowire-coated Ni(OH)2 nanosheet electrode for hybrid capacitors and electrocatalysts. ACS Appl Nano Mater 4:5461–5468. https://doi.org/10.1021/acsanm.1c00825

    Article  CAS  Google Scholar 

  • Behnood R, Sodeifian G (2021) Novel ZnCo2O4 embedded with S, N-CQDs as efficient visible-light photocatalyst. J Photochem Photobiol A Chem 405:112971. https://doi.org/10.1016/j.jphotochem.2020.112971

    Article  CAS  Google Scholar 

  • Chen C, Liu L, Xing J et al (2023) Facile synthesis of porous ZnCo2O4 nanorod for efficient electrochemical degradation of methylene blue. Catal Lett 154:1112–1125. https://doi.org/10.1007/s10562-023-04376-1

    Article  CAS  Google Scholar 

  • Jatoi AW, Ogasawara H, Kim IS, Ni Q-Q (2020) Cellulose acetate/multi-wall carbon nanotube/Ag nanofiber composite for antibacterial applications. Mater Sci Eng: C 110:110679. https://doi.org/10.1016/j.msec.2020.110679

    Article  CAS  Google Scholar 

  • Shrivastav V, Mansi DP et al (2023) Diffusion controlled electrochemical analysis of MoS2 and MOF derived metal oxide–carbon hybrids for high performance supercapacitors. Sci Rep 13:20675. https://doi.org/10.1038/s41598-023-47730-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PY, Reddy TK, Rajaji U, Alothman AA, Govindasamy M (2024) Optimization of Electrochemical Sensitivity in Anticancer Drug Quantification through ZnS@CNS Nanosheets: Synthesis via Accelerated Sonochemical Methodology. Ultrason Sonochem 105:106858. https://doi.org/10.1016/j.ultsonch.2024.106858

  • Peter XT, Kuo CY, Malar P, Govindasamy M, Rajaji U, Yusuf K (2024) Electrochemical detection of antimalarial drug (Amodiaquine) using Dy-MOF@ MWCNTs composites to prevent erythrocytic stages of plasmodium species in human bodies. Microchem J 202:110790. https://doi.org/10.1016/j.microc.2024.110790

  • Ben Messaoud N, Ghica ME, Dridi C et al (2017) Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sens Actuators B Chem 253:513–522. https://doi.org/10.1016/j.snb.2017.06.160

    Article  CAS  Google Scholar 

  • Hu J, Mao D, Duan P et al (2022) Green synthesis of ZnO/BC nanohybrid for fast and sensitive detection of bisphenol A in water. Chemosensors 10:163. https://doi.org/10.3390/chemosensors10050163

    Article  CAS  Google Scholar 

  • Manasa G, Mascarenhas RJ, Satpati AK et al (2018) An electrochemical Bisphenol F sensor based on ZnO/G nano composite and CTAB surface modified carbon paste electrode architecture. Colloids Surf B Biointerfaces 170:144–151. https://doi.org/10.1016/j.colsurfb.2018.06.002

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhu J, Wu Z et al (2023) Electrochemical sensor based on confined synthesis of gold nanoparticles @ covalent organic frameworks for the detection of bisphenol A. Anal Chim Acta 1239:340743. https://doi.org/10.1016/j.aca.2022.340743

    Article  CAS  PubMed  Google Scholar 

  • Pang YH, Wang YY, Shen XF, Qiao JY (2022) Covalent organic framework modified carbon cloth for ratiometric electrochemical sensing of bisphenol A and S. Microchimica Acta 189:189. https://doi.org/10.1007/s00604-022-05297-3

    Article  CAS  PubMed  Google Scholar 

  • Jebril S, Cubillana-Aguilera L, Palacios-Santander JM, Dridi C (2021) A novel electrochemical sensor modified with green gold sononanoparticles and carbon black nanocomposite for bisphenol A detection. Mater Sci Eng B Solid State Mater Adv Technol 264:114951. https://doi.org/10.1016/j.mseb.2020.114951

    Article  CAS  Google Scholar 

  • Chen S, Liu P, Li Y et al (2022) Engineering the doping amount of rare earth element erbium in CdWO4: influence on the electrochemical performance and the application to the electrochemical detection of bisphenol A. Jo Electroanal Chem 904:115867. https://doi.org/10.1016/j.jelechem.2021.115867

    Article  CAS  Google Scholar