Access this article
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
References
-
N. Nozhat, N. Granpayeh, All-optical logic gates based on nonlinear plasmonic ring resonators. Appl. Opt. 54(26), 7944 (2015). https://doi.org/10.1364/ao.54.007944
-
M. Lu et al., Ultra-compact TE-mode-pass power splitter based on subwavelength gratings and hybrid plasmonic waveguides on SOI platform. Opt. Commun. (2021). https://doi.org/10.1016/j.optcom.2021.127250
-
N. Nozhat, H. Alikomak, M. Khodadadi, All-optical XOR and NAND logic gates based on plasmonic nanoparticles. Opt. Commun. 392, 208–213 (2017). https://doi.org/10.1016/j.optcom.2017.02.007
-
M.H. Rezaei, A. Zarifkar, Realization of electro-optical decoder, half-adder, and half-subtractor using graphene plasmonic waveguides. Opt Quantum Electron (2021). https://doi.org/10.1007/s11082-021-02967-z
-
S.H. Abdulwahid, H.M. AL-Tamimi, 5 × 5 Gbps DWDM optical system with DCF and cascaded repeaters techniques. Appl. Opt. 62(8), 2100 (2023). https://doi.org/10.1364/ao.484620
-
Y. Tian et al., Experimental demonstration of an optical Feynman gate for reversible logic operation using silicon micro-ring resonators. Nanophotonics 7(1), 333–337 (2018). https://doi.org/10.1515/nanoph-2017-0071
-
Z. Liu, L. Ding, J. Yi, Z. Wei, J. Guo, Design of a multi-bits input optical logic device with high intensity contrast based on plasmonic waveguides structure. Opt. Commun. 430, 112–118 (2019). https://doi.org/10.1016/j.optcom.2018.08.012
-
H. Wang, D.W. Brandl, F. Le, P. Nordlander, N.J. Halas, Nanorice: a hybrid plasmonic nanostructure. Nano Lett. 6(4), 827–832 (2006). https://doi.org/10.1021/nl060209w
-
S.H. Abdulnabi, All-optical logic gates based on nanoring insulator–metal–insulator plasmonic waveguides at optical communications band. J. Nanophoton. 13(01), 1 (2019). https://doi.org/10.1117/1.jnp.13.016009
-
M.A. Butt, N.L. Kazanskiy, S.N. Khonina, Tapered waveguide mode converters for metal-insulator-metal waveguide plasmonic sensors. Measurement (Lond.) (2023). https://doi.org/10.1016/j.measurement.2023.112601
-
C. Gong, M.S. Leite, Noble metal alloys for plasmonics. ACS Photon. 3(4), 507–513 (2016). https://doi.org/10.1021/acsphotonics.5b00586
-
M.G. Blaber, M.D. Arnold, M.J. Ford, Designing materials for plasmonic systems: the alkali-noble intermetallics. J. Phys. Conden. Matter (2010). https://doi.org/10.1088/0953-8984/22/9/095501
-
H.F. Fakhruldeen, T.S.A. Mansour, F.I. Jabbar, A. Alkhayyat, Multiple inputs all-optical logic gates based on nanoring insulator–metal–insulator plasmonic waveguides. Int. J. Electr. Comput. Eng. 12(6), 6836–6846 (2022). https://doi.org/10.11591/ijece.v12i6.pp6836-6846
-
W.A. Jasim, F.M. Ali, A.K. Abdullah, M.A. Abdulnabi, Design and simulation of optical logic gates based on insulator–metal–insulator (IMI) plasmonic waveguides for optical communications. Int. J. Nonlinear Anal. Appl 12(2), 2483–2497 (2021)
-
M. Ono et al., Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide. Optica 3(9), 999 (2016). https://doi.org/10.1364/optica.3.000999
-
D.S. Akram, H.M. Aamimi, Design of ultra dense WDM optical communication system to reduce signal impairments using DCF and repeater techniques. Iraqi J. Comput. 15, 15 (2023)
-
S.H. Abdulwahid, A.G. Wadday, S.M. Abdulsatar, Multiple-input hybrid plasmonic OR logic gate with a nanostructure. Appl. Opt. 62(3), 566 (2023). https://doi.org/10.1364/ao.482313
-
R. Sharma, R. Rohilla, M. Sharma, Design & simulation of optical fiber Bragg grating pressure sensor for minimum attenuation criteria,” 2005. [Online]. Available: www.jatit.org
-
A. Kumari, A. Pal, A. Singh, S. Sharma, All-optical binary to gray code converter using non-linear material based MIM waveguide. Optik (Stuttg) (2020). https://doi.org/10.1016/j.ijleo.2019.163449
-
X. Sun, L. Zhou, H. Zhu, Q. Wu, X. Li, J. Chen, Design and analysis of a miniature intensity modulator based on a silicon-polymer-metal hybrid plasmonic waveguide. IEEE Photon. J (2014). https://doi.org/10.1109/JPHOT.2014.2329395
-
M.M. Abbood et al., Dispersion compression for different optic communication systems using DCF and FBG, in AIP Conference Proceedings, American Institute of Physics Inc., Oct. 2021. https://doi.org/10.1063/5.0070871
-
S.H. Abdulwahid, A.G. Wadday, S.M. Abdul-Sattar, Structure of 4 × 2 optical encoder based on hybrid plasmonic waveguides. Appl. Opt. 62(1), 102 (2023). https://doi.org/10.1364/ao.477898
-
A. Pati, R. Gordon, Plasmonic slot waveguide propagation analysis. Plasmonics 18(2), 551–560 (2023). https://doi.org/10.1007/s11468-023-01786-0
-
Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, Q. Gong, All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 12(11), 5784–5790 (2012). https://doi.org/10.1021/nl303095s
-
M.F. Turki, H.M. Al-Tamimi, Design of an IMI optical 2 × 4 decoder circuit based on square disk resonators. Appl. Opt. 63(3), 654 (2024). https://doi.org/10.1364/AO.510522
-
K. Latha, R. Arunkumar, K.R. Prabha, S. Robinson, Performance analysis of all optical 4*2 and 8*3 encoder using two dimensional photonic crystals waveguides. SILICON 14(7), 3245–3258 (2022). https://doi.org/10.1007/s12633-021-01107-2
-
W.W. Anku, E.M. Kiarii, R. Sharma, G.M. Joshi, S.K. Shukla, P.P. Govender, Photocatalytic degradation of pharmaceuticals using graphene based materials, in A New Generation Material Graphene: Applications in Water Technology (Springer, 2018), pp. 187–208. https://doi.org/10.1007/978-3-319-75484-0_7
-
ITRC (IRAN Telecommunication Research Center), Institute of Electrical and Electronics Engineers. Iran Section., and Institute of Electrical and Electronics Engineers, in 9th International Symposium on Telecommunication: with emphasis on information & communication technology : 17–19 December, 2018, Iran Telecommunication Research Center, Tehran, Iran
-
S.H. Abdulnabi, M.N. Abbas, Design an all-optical combinational logic circuits based on nano-ring insulator-metal-insulator plasmonic waveguides. Photonics (2019). https://doi.org/10.3390/PHOTONICS6010030
-
S.H. Abdulwahid, A.G. Wadday, S.M. Abdulsatar, Design of optical combinational circuits utilized with hybrid plasmonic waveguides. Plasmonics 18(1), 9–28 (2023). https://doi.org/10.1007/s11468-022-01733-5
-
M.N. Abbas, S.H. Abdulnabi, Plasmonic reversible logic gates. J. Nanophoton. 14(01), 1 (2020). https://doi.org/10.1117/1.jnp.14.016003
-
D.S. Akram, H.M. Al-Tamimi, Design of DWDM optical communication systems with different modulation formats using DCF and a repeater. Appl. Opt. 62(2), 429 (2023). https://doi.org/10.1364/ao.480016
-
A. Askarian, Design and analysis of all optical 2 × 4 decoder based on kerr effect and beams interference procedure. Opt. Quantum Electron. 53(6), 291 (2021). https://doi.org/10.1007/s11082-021-02987-9
-
A. Nayyeri-Raad, H. Saghaei, Y.S. Mehrabani, An optical 2-to-4 decoder based on photonic crystal X-shaped resonators covered by graphene shells. Opt. Quantum Electron. 55(5), 452 (2023). https://doi.org/10.1007/s11082-023-04727-7
-
K. Goswami, H. Mondal, S. Dutta, “Design and analysis of 1:2 line optical decoder based on linear optics. e-Prime Adv. Electr. Eng. Electron. Energy 5, 100190 (2023). https://doi.org/10.1016/j.prime.2023.100190
-
K. Goswami, H. Mondal, M. Sen, Design of 1-to-2-line all-optical decoder based on MMI phase shifter. Opt. Quantum Electron. 55(9), 793 (2023). https://doi.org/10.1007/s11082-023-05055-6
-
S.K. Das, Binary to Hexadecimal decoder using Pockel’s effect guided Mach-Zehnder Interferometer (MZI), 2023. https://doi.org/10.21203/rs.3.rs-2839291/v1