design-of-$$2times-4$$-optical-decoder-based-on-imi-plasmonic-waveguide-with-slot-|-journal-of-optics-–-springer

Design of $$2times 4$$ optical decoder based on IMI plasmonic waveguide with slot | Journal of Optics – Springer

Access this article

Log in via an institution

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. N. Nozhat, N. Granpayeh, All-optical logic gates based on nonlinear plasmonic ring resonators. Appl. Opt. 54(26), 7944 (2015). https://doi.org/10.1364/ao.54.007944

    Article  ADS  Google Scholar 

  2. M. Lu et al., Ultra-compact TE-mode-pass power splitter based on subwavelength gratings and hybrid plasmonic waveguides on SOI platform. Opt. Commun. (2021). https://doi.org/10.1016/j.optcom.2021.127250

    Article  Google Scholar 

  3. N. Nozhat, H. Alikomak, M. Khodadadi, All-optical XOR and NAND logic gates based on plasmonic nanoparticles. Opt. Commun. 392, 208–213 (2017). https://doi.org/10.1016/j.optcom.2017.02.007

    Article  ADS  Google Scholar 

  4. M.H. Rezaei, A. Zarifkar, Realization of electro-optical decoder, half-adder, and half-subtractor using graphene plasmonic waveguides. Opt Quantum Electron (2021). https://doi.org/10.1007/s11082-021-02967-z

    Article  Google Scholar 

  5. S.H. Abdulwahid, H.M. AL-Tamimi, 5 × 5 Gbps DWDM optical system with DCF and cascaded repeaters techniques. Appl. Opt. 62(8), 2100 (2023). https://doi.org/10.1364/ao.484620

    Article  ADS  Google Scholar 

  6. Y. Tian et al., Experimental demonstration of an optical Feynman gate for reversible logic operation using silicon micro-ring resonators. Nanophotonics 7(1), 333–337 (2018). https://doi.org/10.1515/nanoph-2017-0071

    Article  Google Scholar 

  7. Z. Liu, L. Ding, J. Yi, Z. Wei, J. Guo, Design of a multi-bits input optical logic device with high intensity contrast based on plasmonic waveguides structure. Opt. Commun. 430, 112–118 (2019). https://doi.org/10.1016/j.optcom.2018.08.012

    Article  ADS  Google Scholar 

  8. H. Wang, D.W. Brandl, F. Le, P. Nordlander, N.J. Halas, Nanorice: a hybrid plasmonic nanostructure. Nano Lett. 6(4), 827–832 (2006). https://doi.org/10.1021/nl060209w

    Article  ADS  Google Scholar 

  9. S.H. Abdulnabi, All-optical logic gates based on nanoring insulator–metal–insulator plasmonic waveguides at optical communications band. J. Nanophoton. 13(01), 1 (2019). https://doi.org/10.1117/1.jnp.13.016009

    Article  Google Scholar 

  10. M.A. Butt, N.L. Kazanskiy, S.N. Khonina, Tapered waveguide mode converters for metal-insulator-metal waveguide plasmonic sensors. Measurement (Lond.) (2023). https://doi.org/10.1016/j.measurement.2023.112601

    Article  Google Scholar 

  11. C. Gong, M.S. Leite, Noble metal alloys for plasmonics. ACS Photon. 3(4), 507–513 (2016). https://doi.org/10.1021/acsphotonics.5b00586

    Article  Google Scholar 

  12. M.G. Blaber, M.D. Arnold, M.J. Ford, Designing materials for plasmonic systems: the alkali-noble intermetallics. J. Phys. Conden. Matter (2010). https://doi.org/10.1088/0953-8984/22/9/095501

    Article  Google Scholar 

  13. H.F. Fakhruldeen, T.S.A. Mansour, F.I. Jabbar, A. Alkhayyat, Multiple inputs all-optical logic gates based on nanoring insulator–metal–insulator plasmonic waveguides. Int. J. Electr. Comput. Eng. 12(6), 6836–6846 (2022). https://doi.org/10.11591/ijece.v12i6.pp6836-6846

    Article  Google Scholar 

  14. W.A. Jasim, F.M. Ali, A.K. Abdullah, M.A. Abdulnabi, Design and simulation of optical logic gates based on insulator–metal–insulator (IMI) plasmonic waveguides for optical communications. Int. J. Nonlinear Anal. Appl 12(2), 2483–2497 (2021)

    Google Scholar 

  15. M. Ono et al., Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide. Optica 3(9), 999 (2016). https://doi.org/10.1364/optica.3.000999

    Article  ADS  Google Scholar 

  16. D.S. Akram, H.M. Aamimi, Design of ultra dense WDM optical communication system to reduce signal impairments using DCF and repeater techniques. Iraqi J. Comput. 15, 15 (2023)

    Google Scholar 

  17. S.H. Abdulwahid, A.G. Wadday, S.M. Abdulsatar, Multiple-input hybrid plasmonic OR logic gate with a nanostructure. Appl. Opt. 62(3), 566 (2023). https://doi.org/10.1364/ao.482313

    Article  ADS  Google Scholar 

  18. R. Sharma, R. Rohilla, M. Sharma, Design & simulation of optical fiber Bragg grating pressure sensor for minimum attenuation criteria,” 2005. [Online]. Available: www.jatit.org

  19. A. Kumari, A. Pal, A. Singh, S. Sharma, All-optical binary to gray code converter using non-linear material based MIM waveguide. Optik (Stuttg) (2020). https://doi.org/10.1016/j.ijleo.2019.163449

    Article  Google Scholar 

  20. X. Sun, L. Zhou, H. Zhu, Q. Wu, X. Li, J. Chen, Design and analysis of a miniature intensity modulator based on a silicon-polymer-metal hybrid plasmonic waveguide. IEEE Photon. J (2014). https://doi.org/10.1109/JPHOT.2014.2329395

    Article  Google Scholar 

  21. M.M. Abbood et al., Dispersion compression for different optic communication systems using DCF and FBG, in AIP Conference Proceedings, American Institute of Physics Inc., Oct. 2021. https://doi.org/10.1063/5.0070871

  22. S.H. Abdulwahid, A.G. Wadday, S.M. Abdul-Sattar, Structure of 4 × 2 optical encoder based on hybrid plasmonic waveguides. Appl. Opt. 62(1), 102 (2023). https://doi.org/10.1364/ao.477898

    Article  ADS  Google Scholar 

  23. A. Pati, R. Gordon, Plasmonic slot waveguide propagation analysis. Plasmonics 18(2), 551–560 (2023). https://doi.org/10.1007/s11468-023-01786-0

    Article  Google Scholar 

  24. Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, Q. Gong, All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 12(11), 5784–5790 (2012). https://doi.org/10.1021/nl303095s

    Article  ADS  Google Scholar 

  25. M.F. Turki, H.M. Al-Tamimi, Design of an IMI optical 2 × 4 decoder circuit based on square disk resonators. Appl. Opt. 63(3), 654 (2024). https://doi.org/10.1364/AO.510522

    Article  ADS  Google Scholar 

  26. K. Latha, R. Arunkumar, K.R. Prabha, S. Robinson, Performance analysis of all optical 4*2 and 8*3 encoder using two dimensional photonic crystals waveguides. SILICON 14(7), 3245–3258 (2022). https://doi.org/10.1007/s12633-021-01107-2

    Article  Google Scholar 

  27. W.W. Anku, E.M. Kiarii, R. Sharma, G.M. Joshi, S.K. Shukla, P.P. Govender, Photocatalytic degradation of pharmaceuticals using graphene based materials, in A New Generation Material Graphene: Applications in Water Technology (Springer, 2018), pp. 187–208. https://doi.org/10.1007/978-3-319-75484-0_7

  28. ITRC (IRAN Telecommunication Research Center), Institute of Electrical and Electronics Engineers. Iran Section., and Institute of Electrical and Electronics Engineers, in 9th International Symposium on Telecommunication: with emphasis on information & communication technology : 17–19 December, 2018, Iran Telecommunication Research Center, Tehran, Iran

  29. S.H. Abdulnabi, M.N. Abbas, Design an all-optical combinational logic circuits based on nano-ring insulator-metal-insulator plasmonic waveguides. Photonics (2019). https://doi.org/10.3390/PHOTONICS6010030

    Article  Google Scholar 

  30. S.H. Abdulwahid, A.G. Wadday, S.M. Abdulsatar, Design of optical combinational circuits utilized with hybrid plasmonic waveguides. Plasmonics 18(1), 9–28 (2023). https://doi.org/10.1007/s11468-022-01733-5

    Article  Google Scholar 

  31. M.N. Abbas, S.H. Abdulnabi, Plasmonic reversible logic gates. J. Nanophoton. 14(01), 1 (2020). https://doi.org/10.1117/1.jnp.14.016003

    Article  Google Scholar 

  32. D.S. Akram, H.M. Al-Tamimi, Design of DWDM optical communication systems with different modulation formats using DCF and a repeater. Appl. Opt. 62(2), 429 (2023). https://doi.org/10.1364/ao.480016

    Article  ADS  Google Scholar 

  33. A. Askarian, Design and analysis of all optical 2 × 4 decoder based on kerr effect and beams interference procedure. Opt. Quantum Electron. 53(6), 291 (2021). https://doi.org/10.1007/s11082-021-02987-9

    Article  Google Scholar 

  34. A. Nayyeri-Raad, H. Saghaei, Y.S. Mehrabani, An optical 2-to-4 decoder based on photonic crystal X-shaped resonators covered by graphene shells. Opt. Quantum Electron. 55(5), 452 (2023). https://doi.org/10.1007/s11082-023-04727-7

    Article  Google Scholar 

  35. K. Goswami, H. Mondal, S. Dutta, “Design and analysis of 1:2 line optical decoder based on linear optics. e-Prime Adv. Electr. Eng. Electron. Energy 5, 100190 (2023). https://doi.org/10.1016/j.prime.2023.100190

    Article  Google Scholar 

  36. K. Goswami, H. Mondal, M. Sen, Design of 1-to-2-line all-optical decoder based on MMI phase shifter. Opt. Quantum Electron. 55(9), 793 (2023). https://doi.org/10.1007/s11082-023-05055-6

    Article  Google Scholar 

  37. S.K. Das, Binary to Hexadecimal decoder using Pockel’s effect guided Mach-Zehnder Interferometer (MZI), 2023. https://doi.org/10.21203/rs.3.rs-2839291/v1

Download references