detection-of-land-subsidence-using-hybrid-and-ensemble-deep-learning-models-–-springer

Detection of land subsidence using hybrid and ensemble deep learning models – Springer

References

  • Abrishamchi A, Khakbazan Fard F, Taghavi A (2020) Planning for groundwater sustainable use: a case study in Nishapur Plain, Iran. Agric Water Manage 229:105835

    Article  Google Scholar 

  • Amighpey M, Arabi S (2016) Studying land subsidence in Yazd Province, Iran, by integration of InSAR and leveling measurements. Remote Sens Appl: Soc Environ 4:1–8

    Google Scholar 

  • Arabameri A, Saha S, Roy J, Tiefenbacher JP, Cerda A, Biggs T, Pradhan B, Thao Thi Ngo P, Collins AL (2020) A novel ensemble computational intelligence approach for the spatial prediction of land subsidence susceptibility. Sci Total Environ 726:138595

    Article  CAS  Google Scholar 

  • Ashraf S, Agha Kouchak A, Nazemi A, Mirchi A, Sadegh M, Moftakhari HR, Hassanzadeh E, Miao C-Y, Madani K, Baygi MM et al (2019) Compounding effects of human activities and climatic changes on surface water availability in Iran. Clim Change 152:379–391. https://doi.org/10.1007/s10584-018-2336-6

    Article  Google Scholar 

  • Azarakhsh Z, Azadbakht M, Matkan A (2022) Estimation, modeling, and prediction of land subsidence using Sentinel-1 time series in Tehran-Shahriar plain: A machine learning-based investigation. Remote Sens Appl: Soc Environ 25:100691

    Google Scholar 

  • Baldi P, Casula G, Cenni N, Loddo F, Pesci A (2009) GPS-based monitoring of land subsidence in the Po Plain (Northern Italy). Earth Planet Sci Lett 288(1–2):204–212

    Article  CAS  Google Scholar 

  • Bokhari R, Shu H, Tariq A, Al-Ansari N, Guluzade R, Chen T, Jamil A, Aslam M (2023) Land subsidence analysis using synthetic aperture radar data. Heliyon 9(3):e14690

    Article  Google Scholar 

  • Burbey TJ (2020) Extensometer forensics: what can the data really tell us? Hydrogeol J 28:637–655. https://doi.org/10.1007/s10040-019-02060-6

    Article  Google Scholar 

  • Chai JC, Shen SL, Zhu HH, Zhang XL (2004) Land subsidence due to groundwater drawdown in Shanghai. Geotechnique 54(2):143–147

    Article  Google Scholar 

  • Chen C, Pei S, Jiao J (2003) Land subsidence caused by groundwater exploitation in Suzhou City. China Hydrogeol J 11:275–287

    Article  Google Scholar 

  • Chen M, Tomás R, Li Z, Motagh M, Li T, Hu L, Gong H, Li X, Yu J, Gong X (2016) Imaging Land Subsidence Induced by Groundwater extraction in Beijing (China) using Satellite Radar Interferometry. Remote Sens 8:468

    Article  Google Scholar 

  • Dinar A, Esteban E, Calvo E, Herrera G, Teatini P, Tomás R, Li Y, Ezquerro P, Albiac J (2021) We lose ground: global assessment of land subsidence impact extent. Sci Total Environ 786:147415

    Article  CAS  Google Scholar 

  • Doosti Sabzi B, Yazdi N, Maleki A (2023) Chap. 15 – Technological solutions for adaptation with Iran’s water resources crisis. In: Ayyoob S, Khavarian-Garmsir AR (eds) Urban Climate Adaptation and Mitigation. Elsevier, pp 327–343

  • Drumond TF, Viéville T, Alexandre F (2019) Bio-inspired analysis of deep learning on not-so-big data using data-prototypes. Front Comput Neurosci 12:100

    Article  Google Scholar 

  • Faunt C.C., Sneed M, Traum J, Brandt J.T. (2016) Water availability and land subsidence in the Central Valley, California, USA. Hydrogeol J 24(3):675

    Article  Google Scholar 

  • Feizizadeh B, Blaschke T (2014) An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping. Int J Geogr Inf Sci 28(3):610–638

    Article  Google Scholar 

  • Galloway DL, Burbey TJ (2011) Review: regional land subsidence accompanying groundwater extraction. Hydrogeology 19:1459–1486

    Article  Google Scholar 

  • García-Soriano D, Quesada-Román A, Zamorano-Orozco JJ (2020) Geomorphological hazards susceptibility in high-density urban areas: a case study of Mexico City. J S Am Earth Sci 102:102667

    Article  Google Scholar 

  • Gholami H, Mohammadifar A (2022) Novel deep learning hybrid models (CNN-GRU and DLDL-RF) for the susceptibility classification of dust sources in the Middle East: a global source. Sci Rep 12(1):19342

    Article  CAS  Google Scholar 

  • Gholami H, Mohammadifar A, Fitzsimmons KE, Li Y, Kaskaoutis DG (2023a) Modeling land susceptibility to wind erosion hazards using LASSO regression and graph convolutional networks. Front Environ Sci 11:520

    Article  Google Scholar 

  • Gholami H, Mohammadifar A, Golzari S, Song Y, Pradhan B (2023b) Interpretability of simple RNN and GRU deep learning models used to map land susceptibility to gully erosion. Sci Total Environ 904:166960

    Article  CAS  Google Scholar 

  • Ghordoyee Milan S, Kayhomayoon Z, Arya Azar N, Berndtsson R, Ramezani MR, Moghaddam K, H (2023) Using machine learning to determine acceptable levels of groundwater consumption in Iran. Sustainable Prod Consum 35:388–400

    Article  Google Scholar 

  • Goudie AS (2022) The impacts of humans on geomorphology. Geol Soc Lond Mem 581:121–134

    Article  Google Scholar 

  • Haji-Aghajany S, Amerian Y (2020) Atmospheric phase screen estimation for land subsidence evaluation by InSAR time series analysis in Kurdistan, Iran,  J Atmos Solar-Terr Phys 205:105314

    Article  Google Scholar 

  • Han W, Feng R, Wang L, Cheng Y (2018) A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification. ISPRS J Photogramm Remote Sens 145:23–43

    Article  Google Scholar 

  • Hillel D, Hatfield JL (eds) (2005) Encyclopedia of soils in the environment, vol 3. Elsevier, Amsterdam

  • Huang B, Tan G, Dou H, Cui Z, Song Y, Zhou T (2022) Mutual gain adaptive network for segmenting brain stroke lesions. Appl Soft Comput 129:109568

    Article  Google Scholar 

  • Ingebritsen SE, Ikehara ME (1999) Sacramento-San Joaquin Delta: the sinking heart of the state. Land subsidence in the United States, vol 1182. Circular, pp 83–94

    Google Scholar 

  • Karanam V, Motagh M, Garg S, Jain K (2021) Multi-sensor remote sensing analysis of coal fire induced land subsidence in Jharia Coalfields, Jharkhand, India. Int J Appl Earth Obs Geoinf 102:102439

    Google Scholar 

  • Karila K, Karjalainen M, Hyyppä J, Koskinen J, Saaranen V, Rouhiainen PA (2013) Comparison of precise leveling and persistent scatterer SAR Interferometry for building subsidence rate measurement. ISPRS Int J Geo-Inf 2:797–816

    Article  Google Scholar 

  • Kariminejad N, Pourghasemi HR, Hosseinalizadeh M (2022) Analytical techniques for mapping multi-hazard with geo-environmental modeling approaches and UAV images. Sci Rep 12(1):14946

    Article  CAS  Google Scholar 

  • Kazemi Garajeh M, Malaky F, Weng Q, Feizizadeha B, Blaschke T, Lakes T (2021) An automated deep learning convolutional neural network algorithm applied for soil salinity distribution mapping in Lake Urmia. Iran. Sci Total Environ 778:146253

    Article  Google Scholar 

  • Kazemi Garajeh M, Blaschke T, Haghi H, Weng V, Valizadeh Kamran Q, Li K, Z (2022a) A comparison between Sentinel-2 and Landsat 8 OLI Satellite images for soil salinity distribution mapping using a deep learning convolutional neural network. Can J Remote Sens 48(3):452–468

    Article  Google Scholar 

  • Kazemi Garajeh M, Weng Q, Hossein Haghi V, Li Z, Kazemi Garajeh A, Salmani B (2022b) Learning-based methods for detection and monitoring of shallow Flood-affected areas: impact of shallow-Flood spreading on Vegetation Density. Can J Remote Sens 48(4):481–503

    Article  Google Scholar 

  • Kazemi Garajeh M, Li Z, Hasanlu S et al (2022c) Developing an integrated approach based on geographic object-based image analysis and convolutional neural network for volcanic and glacial landforms mapping. Sci Rep 12:21396. https://doi.org/10.1038/s41598-022-26026-z

    Article  CAS  Google Scholar 

  • Kazemi Garajeh M, Salmani B, Naghadehi Z (2023) An integrated approach of remote sensing and geospatial analysis for modeling and predicting the impacts of climate change on food security. Sci Rep 13:1057. https://doi.org/10.1038/s41598-023-28244-5

    Article  CAS  Google Scholar 

  • Kingma D, Ba J (2014) Adam: amethod for stochastic optimization. International Conference on Learning Representations

  • Kollias D, Zafeiriou S (2020) Exploiting multi-cnn features in cnn-rnn based dimensional emotion recognition on the omg in-the-wild dataset. IEEE Trans Affect Comput 12(3):595–606

    Article  Google Scholar 

  • Labbaf Khaneiki M, Al-Ghafri S, A (2022) The circle of water justice in the history of Iran. Water Secur. 16:100122

    Article  Google Scholar 

  • Lashkaripour GR, Ghafoori M, Barani R, H.R (2009) An investigation on the mechanism of earth-fissure and land subsidence in the western part of Kashmar plain. Geol Stud 1(1):95–111

    Google Scholar 

  • Lashkaripour GR, Ghafoori M, Maddah MM (2014) An investigation on the mechanism of land subsidence in the Northwest of Mashhad city, NE Iran. J Biodivers Environ Sci (JBES) 5:321–327

    Google Scholar 

  • Liu Z, Hay-Man Ng A, Wang H, Chen J, Du Z, Ge L (2023) Land subsidence modeling and assessment in the West Pearl River Delta from combined InSAR time series, land use and geological data. Int J Appl Earth Obs Geoinf 118:103228

    Google Scholar 

  • Luqmanul Hakim W, Fulki Fadhillah M, Park S, Pradhan B, Won JS, Lee CW (2023) InSAR time-series analysis and susceptibility mapping for land subsidence in Semarang, Indonesia using convolutional neural network and support vector regression. Remote Sens Environ 287:113453

    Article  Google Scholar 

  • Madani K, Mahoozi S (2021) Iran’s ’Water Bankruptcy’ is a Warning for the Entire Middle East. https://dawnmena.org/irans-water-bankruptcy-is-a-warning-for-the-entire-middle-east

  • Mahmoudpour M, Khamehchiyan M, Nikudel MR, Ghassemi MR (2016) Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran. Eng Geol 201:6–28

    Article  Google Scholar 

  • Marker BR (2013) Land subsidence. Encyclopedia of Earth Sciences Series

    Book  Google Scholar 

  • Michel D (2017) Iran’s impending water crisis. Water, Security and US Foreign Policy, Routledge, pp 168–188

  • Minderhoud PSJ, Erkens G, Pham VH, Bui VT, Erban L, Kooi H, Stouthamer E (2017) Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environ Res Lett 12(6):064006

  • Mohammadifar A, Gholami H, Comino JR, Collins AL (2021) Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory. CATENA 200:105178

    Article  Google Scholar 

  • Mohammadifar A, Gholami H, Golzari S (2023) Stacking-and voting-based ensemble deep learning models (SEDL and VEDL) and active learning (AL) for mapping land subsidence. Environ Sci Pollut Res 30(10):26580–26595

    Article  Google Scholar 

  • Naghibi SA, Khodaei B, Hashemi H (2022) An integrated InSAR-machine learning approach for ground deformation rate modeling in arid areas. J Hydrol 608:127627

    Article  Google Scholar 

  • Najafi M, Jamali V, Schober R, Poor HV (2020) Physics-based modeling and scalable optimization of large intelligent reflecting surfaces. IEEE Trans Commun 69(4):2673–2691

    Article  Google Scholar 

  • Nasir JA, Khan OS, Varlamis I (2021) Fake news detection: a hybrid CNN-RNN based deep learning approach. Int J Inform Manage Data Insights 1(1):100007

    Google Scholar 

  • Pu C, Xu Q, Zhao K, Chen W, Wang X, Li H, Liu J, Kou P (2022) Spatiotemporal evolution and surface response of land subsidence over a large-scale land creation area on the Chinese Loess Plateau. Int J Appl Earth Obs Geoinf 111:102835

    Google Scholar 

  • Rahmati O, Falah F, Naghibi SA, Biggs T, Soltani M, Deo RC, Cerdà A, Mohammadi F, Bui DT (2019a) Land subsidence modelling using tree-based machine learning algorithms. Sci Total Environ 672:239–252

    Article  CAS  Google Scholar 

  • Rahmati O, Golkarian A, Biggs T, Keesstra S, Mohammadi F, Daliakopoulos IN (2019b) Land subsidence hazard modeling: machine learning to identify predictors and the role of human activities. J Environ Manage 236:466–480

    Article  Google Scholar 

  • Ravalico JK, Dandy GC, Maier HR (2010) Management option Rank Equivalence (MORE)–A new method of sensitivity analysis for decision-making. Environ Model Softw 25(2):171–181

    Article  Google Scholar 

  • Rezaee M, Mahdianpari M, Zhang Y, Salehi B (2018) Deep convolutional neural network for complex wetland classification using optical remote sensing imagery. IEEE J Sel Top App Earth Observ Rem Sens 11:3030–3039

    Article  Google Scholar 

  • Rezaei M, Mohammadifar A, Gholami H, Mina M, Riksen MJ, Ritsema C (2023) Mapping of the wind erodible fraction of soil by bidirectional gated recurrent unit (BiGRU) and bidirectional recurrent neural network (BiRNN) deep learning models. CATENA 223:106953

    Article  Google Scholar 

  • Sabzevar MS, Rezaei A, Khaleghi B (2021) Incremental adaptation strategies for agricultural water management under water scarcity condition in Northeast Iran. Reg Sustain 2(3):224–238

    Google Scholar 

  • Scardapane S, Van Vaerenbergh S, Totaro S, Uncini A (2019) Kafnets: kernel-based non-parametric activation functions for neural networks. Neural Netw 110:19–32

    Article  Google Scholar 

  • Schumann HH, Poland JF (1970) Land subsidence, earth fissures and groundwater withdrawal in South-Central Arizona, U. S. A

  • Shiravi M, Sepehr A, Mosaedi A, Parvian N (2016) Desertification susceptibility in ecoregions of Khorasan-Razavi based on Life Cycle Assessment (LCA). Phys Geogr Res Q 48(2):305–320

    Google Scholar 

  • Soltani N, Keshavarzi B, Moore F, Tavakol T, Lahijanzadeh AR, Jaafarzadeh N, Kermani M (2015) Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis. Iran. Sci Total Environ 505:712–723

    Article  CAS  Google Scholar 

  • Tangdamrongsub N, Han S, Jasinski MF, Šprlák M (2019) Quantifying water storage change and land subsidence induced by reservoir impoundment using GRACE, Landsat, and GPS data. Remote Sens Environ 233:111385

    Article  Google Scholar 

  • Teatini P, Ferronato M, Gambolati G, Gonella M (2006) Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: modeling the past occurrence and the future trend. Water Resour Res, 42(1)

  • Wang S, Quan D, Liang X, Ning M, Guo Y, Jiao L (2018) A deep learning framework for remote sensing image registration. ISPRS J Photogramm Remote Sens 145:148–164

    Article  Google Scholar 

  • Xu Y, Lu Z, Bürgmann R, Hensley S, Fielding E, Kim J (2023) P-band SAR for ground deformation surveying: Advantages and challenges. Remote Sens Environ 287:113474

  • Yang C, Lv S, Hou Z, Zhang Q, Li T, Zhao C (2022) Monitoring of land subsidence and ground fissure activity within the Su-Xi-Chang area based on time-series InSAR. Remote Sens 14:903. https://doi.org/10.3390/rs14040903

    Article  Google Scholar 

  • Zhang X, Chen F, Huang R (2018) A combination of RNN and CNN for attention-based relation classification. Procedia Comput Sci 131:911–917

    Article  Google Scholar 

  • Zhang J, Ke C, Shen X, Lin J, Wang R (2023) Monitoring land subsidence along the subways in Shanghai on the basis of time-series InSAR. Remote Sens 15(4):908

  • Zhao F, Gong W, Tang H, Pudasaini P, Ren S, Cheng T, Z (2023) An integrated approach for risk assessment of land subsidence in Xi’an, China using optical and radar satellite images. Eng Geol 314:106983

    Article  Google Scholar 

  • Zhu X, Ning Z, Cheng H, Zhang P, Sun R, Yang X, Liu H (2022) A novel calculation method of subsidence waterlogging spatial information based on remote sensing techniques and surface subsidence prediction. J Clean Prod 335:130366

    Article  Google Scholar 

Download references