effect-of-vinyl-silane–treated-plant-root-waste-biomass-cellulose-on-pineapple-fiber-vinyl-ester-composites:-a-characterization-study-–-springer

Effect of vinyl silane–treated plant root waste biomass cellulose on pineapple fiber-vinyl ester composites: a characterization study – Springer

Abstract

This comprehensive study explores the effect of vinyl silane-treated cellulose on composites made from pineapple fiber-reinforced vinyl ester resin. The main goal was to investigate the influence of vinyl silane treatment on cellulose derived from Amaranthus dubius root biomass and its load-bearing properties when combined with pineapple fiber in vinyl ester composites. The cellulose was synthesized from waste Amaranthus dubius root biomass through a thermo-chemical process and subsequently treated with vinyl silane. Composites were then fabricated using 40 vol.% pineapple fiber along with varying percentages of the treated cellulose. Mechanical testing showed that incorporating 40 vol.% pineapple fiber significantly improved the composite’s strength and toughness. Further enhancements were observed with the addition of 1.0 vol.% of vinyl silane-treated cellulose, which boosted the mechanical strength due to improved adhesion between the cellulose and the resin matrix. Fatigue testing indicated that the vinyl silane treatment increased the number of cycles the composite could withstand, highlighting better fatigue resistance. However, a potential saturation point was noted at 2.0% cellulose content. Creep resistance tests showed consistent improvement with the addition of reinforcing elements, identifying an optimal cellulose concentration for resisting time-dependent deformation. Thermal analysis (TGA) revealed that the inclusion of treated cellulose affected mass loss and decomposition temperatures, with silane-treated cellulose reducing mass loss due to enhanced bonding and modified cellulose structure. Scanning electron microscopy (SEM) provided insights into the microstructure, emphasizing the critical role of optimizing interfacial adhesion to enhance mechanical properties. In conclusion, the use of vinyl silane-treated reinforcements in the composites led to superior and balanced mechanical properties. These improved composites have potential applications in the automotive, defense, and structural sectors.

Access this article

Log in via an institution

Subscribe and save

  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data availability

All data are within the manuscript.

References

  1. AL-Oqla FM, Omar AA, Fares O (2018) Evaluating sustainable energy harvesting systems for human implantable sensors. Int J Electron 105(3):504–517. https://doi.org/10.1080/00207217.2017.1378377

    Article  Google Scholar 

  2. Al-Jarrah R, AL-Oqla FM (2022) A novel integrated BPNN/SNN artificial neural network for predicting the mechanical performance of green fibers for better composite manufacturing. Compos Struct 289:115475

    Article  Google Scholar 

  3. Hussain A, Podgursky V, Viljus M, Awan MR (2023) Adv Industrial Eng Polymer Res 6(1):1–12. https://doi.org/10.1016/j.aiepr.2022.10.001

    Article  Google Scholar 

  4. AL-Oqla FM, Alaaeddin MH, Hoque ME, Thakur VK (2022) Biopolymers and biomimetic materials in medical and electronic-related applications for environment–health–development nexus: systematic review. J Bionic Eng 19(6):1562–1577. https://doi.org/10.1007/s42235-022-00240-x

    Article  Google Scholar 

  5. Doğan, A, Güneş, Ç (2024) Mechanical and thermal properties of short banana fiber reinforced polyoxymethylene composite materials dependent on alkali treatment. Materials Testing, (0). https://doi.org/10.1515/mt-2023-0308

  6. AL-Oqla FM, Hayajneh MT (2021) A hierarchy weighting preferences model to optimise green composite characteristics for better sustainable bio-products. Int J Sustain Eng 14(5):1043–1048. https://doi.org/10.1080/19397038.2020.1822951

    Article  Google Scholar 

  7. AL-Oqla FM, Sapuan SM (2018) Investigating the inherent characteristic/performance deterioration interactions of natural fibers in bio-composites for better utilization of resources. J Polym Environ 26:1290–1296. https://doi.org/10.1007/s10924-017-1028-z

    Article  Google Scholar 

  8. Al-Oqla FM (2021) Performance trends and deteriorations of lignocellulosic grape fiber/polyethylene biocomposites under harsh environment for enhanced sustainable bio-materials. Cellulose 28(4):2203–2213. https://doi.org/10.1007/s10570-020-03649-x

    Article  Google Scholar 

  9. Kirubakaran, G, Senthamaraikannan, C (2024) Biomass Conversion and Biorefinery, 1–11. https://doi.org/10.1007/s13399-024-05268-z

  10. Natarajan, P, Mohanraj, M, Kumar, M, Sathish, S (2024) International Polymer Processing, (0). https://doi.org/10.1515/ipp-2023-4433

  11. AL-Oqla, FM, Omari, MA, Al-Ghraibah, A (2017) Predicting the potential of biomass-based composites for sustainable automotive industry using a decision-making model. In Lignocellulosic Fibre and Biomass-Based Composite Materials (pp. 27–43). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100959-8.00003-2

  12. Senthilkumar S, Raja VL, Gaur P, Patil PP, Natrayan L, Kaliappan S (2023) Appl Mech Mater 912:113–121. https://doi.org/10.4028/p-f6i955

    Article  Google Scholar 

  13. Fares O, AL-Oqla FM, Hayajneh MT (2019) Dielectric relaxation of Mediterranean lignocellulosic fibers for sustainable functional biomaterials. Mater Chem Phys 229:174–182. https://doi.org/10.1016/j.matchemphys.2019.02.095

    Article  Google Scholar 

  14. Al-Oqla FM (2021) Flexural characteristics and impact rupture stress investigations of sustainable green olive leaves bio-composite materials. J Polym Environ 29(3):892–899. https://doi.org/10.1007/s10924-020-01889-3

    Article  Google Scholar 

  15. Wu Q, Liu C, Li S, Yan Y, Yu S, Huang L (2023) Cellulose 30(1):235–246. https://doi.org/10.1007/s10570-022-04905-y

    Article  Google Scholar 

  16. Lorwanishpaisarn N, Sae-Oui P, Amnuaypanich S, Siriwong C (2023) Sci Rep 13(1):2517. https://doi.org/10.1038/s41598-023-29531-x

    Article  Google Scholar 

  17. AL-Oqla FM (2023) Biomaterial hierarchy selection framework under uncertainty for more reliable sustainable green products. Jom 75(7):2187–2198. https://doi.org/10.1007/s11837-023-05797-4

    Article  Google Scholar 

  18. Divakaran, D, Sriariyanun, M, Jagadeesan, R, Suyambulingam, I, Sanjay, MR, Siengchin, S (2023 Biomass Conversion and Biorefinery, 1–17. https://doi.org/10.1007/s13399-023-04346-y

  19. Shaker K, Umair M, Shahid S, Jabbar M, Ullah Khan RMW, Zeeshan M, Nawab Y (2022) J Nat Fibers 19(11):4210–4222. https://doi.org/10.1080/15440478.2020.1856271

    Article  Google Scholar 

  20. Gelaye, Y (2023) A review of amaranth crop as a potential solution to Ethiopia’s nutritional crisis. Nutrition and Dietary Supplements, 101–110. https://doi.org/10.2147/NDS.S428058

  21. Kodzwa JJ, Madamombe G, Masvaya EN, Nyamangara J (2023) CABI Agriculture and Bioscience 4(1):44. https://doi.org/10.1186/s43170-023-00184-0

    Article  Google Scholar 

  22. Hayajneh M, AL-Oqla FM, Aldhirat A (2022) Physical and mechanical inherent characteristic investigations of various Jordanian natural fiber species to reveal their potential for green biomaterials. J Natural Fibers 19(13):7199–7212. https://doi.org/10.1080/15440478.2021.1944432

    Article  Google Scholar 

  23. Abolore, RS, Jaiswal, S, Jaiswal, AK (2023) Carbohydrate Polymer Technologies and Applications, 100396. https://doi.org/10.1016/j.carpta.2023.100396

  24. Susi, S, Ainuri, M, Wagiman, W, Falah, MAF (2023) Int J Biomaterials, 2023. https://doi.org/10.1155/2023/9169431

  25. Liu W, Fan R, Wang W, Liu P (2024) J Polym Res 31(1):16. https://doi.org/10.1007/s10965-023-03859-4

    Article  Google Scholar 

  26. Padmanaban, MA, Sambath, S, Jayabalakrishnan, D, Suthan, R (2023) Biomass Conversion and Biorefinery, 1–9. https://doi.org/10.1007/s13399-023-04754-0

  27. Saravanan, KG, Kaliappan, S, Natrayan, L, Patil, PP (2023) Biomass Conversion and Biorefinery, 1–13. https://doi.org/10.1007/s13399-023-04495-0

  28. Shanmugam D, Thirumurugan R, Thiruchitrambalam M, Latha C, Maheshkumar B (2023) Compos A Appl Sci Manuf 168:107497. https://doi.org/10.1016/j.compositesa.2023.107497

    Article  Google Scholar 

  29. Theja KK, Bharathiraja G, Murugan VS, Muniappan A (2023) Materials Today: Proceedings 80:3208–3211. https://doi.org/10.1016/j.matpr.2021.07.213

    Article  Google Scholar 

  30. Murugan MA, Jayaseelan V, Jayabalakrishnan D et al (2020) Silicon 12:1847–1856. https://doi.org/10.1007/s12633-019-00297-0

    Article  Google Scholar 

  31. Alhuthali A, Low IM, Dong C (2012) Compos B Eng 43(7):2772–2781. https://doi.org/10.1016/j.compositesb.2012.04.038

    Article  Google Scholar 

  32. Alshahrani H, Prakash VRA (2024) Biomass Conv Bioref 14:8081–8089. https://doi.org/10.1007/s13399-022-02801-w

    Article  Google Scholar 

  33. Khan MKA, Faisal M, Prakash VRA (2024). Polym Bull. https://doi.org/10.1007/s00289-024-05208-x

    Article  Google Scholar 

  34. Alshahrani, H ((2024)) V R, A P Biomass Conv Bioref 14, 6609–6620. https://doi.org/10.1007/s13399-022-02691-y

  35. Jayabalakrishnan D, Saravanan K, Ravi S et al (2021) Silicon 13:2509–2517. https://doi.org/10.1007/s12633-020-00612-0

    Article  Google Scholar 

  36. Arun Prakash VR, Rajadurai A (2016) Appl Phys A 122:875. https://doi.org/10.1007/s00339-016-0411-2

    Article  Google Scholar 

  37. Alhuthali AM, Low I-M (2015) Polym Eng Sci 55(12):2685–2697. https://doi.org/10.1002/pen.23617

    Article  Google Scholar 

  38. Todkar SS, Patil SA (2019) Compos B Eng 174:106927. https://doi.org/10.1016/j.compositesb.2019.106927

    Article  Google Scholar 

  39. Basheer Aaliya, Kappat Valiyapeediyekkal Sunooj & Maximilian Lackner (2021), Int J Biobased Plastics, 3:1, 40–84, https://doi.org/10.1080/24759651.2021.1881214

  40. Khalil HA, Tehrani M, Davoudpour Y, Bhat A, Jawaid M, Hassan A (2012) J Reinf Plast Compos 32(5):330–356. https://doi.org/10.1177/0731684412458553

    Article  Google Scholar 

  41. Kısmet Y, Dogan A (2022) Iran Polym J 31:143–151. https://doi.org/10.1007/s13726-021-00988-9

    Article  Google Scholar 

  42. Ben et al (2021) Silicon 13:1703–1712. https://doi.org/10.1007/s12633-020-00569-0

    Article  Google Scholar 

  43. Rajadurai A (2016) Appl Surf Sci 384:99–106. https://doi.org/10.1016/j.apsusc.2016.04.185

    Article  Google Scholar 

  44. Khan, MKA, Faisal, M, Arun Prakash, VR (2024) Biomass Conv Bioref. https://doi.org/10.1007/s13399-024-05421-8

  45. Arun Prakash VR, Xavier JF, Ramesh G et al (2022) Biomass Conv Bioref 12:5451–5461. https://doi.org/10.1007/s13399-020-00938-0

    Article  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deanship of Research and graduate studies at King Khalid University for funding this work through Large Group Research Project under grant number: RGP 2/57/45.

Author information

Authors and Affiliations

  1. Department of Pharmacognosy and Allied Sciences, University of Basrah College of Pharmacy, Basrah, Iraq

    Rafat M. Alatabi Syed

  2. Department of Mechanical Engineering, Aditya University, Surampalem, India

    N. Nagabhooshanam

  3. Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University, Mathura, 281406, India

    N. Nagabhooshanam

  4. Department of Mechatronics, Sri Manakula Vinayagar Engineering College, Madagadipet, Puducherry, India

    Balamuruga Mohan Raj G

  5. Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61411, Asir, Kingdom of Saudi Arabia

    Rajesh Verma

  6. Department of Education, Senthil College of Education, Puducherry, India

    D. Sendil Kumar

  7. Department of Research Analytics, Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India

    N. Nagabhooshanam

  8. Department of Chemistry, Aditya University, Surampalem, India

    Bantu Tirupati Rao

  9. Department of Chemistry, Aditya College of Engineering & Technology, Surampalem, India

    D. Sravani

Contributions

Nagabhooshanam N., and Bantu Tirupati Rao have undertaken the complete research.

Rafat M. Alatabi Sayed, D. Sravani, and Balamuruga Mohan Raj. G have provided supports in testing and manuscript drafting.

Rajesh Verma and D. Sendil Kumar are responsible for funding support.

Corresponding author

Correspondence to N. Nagabhooshanam.

Ethics declarations

Ethical approval

NA.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syed, R.M.A., Nagabhooshanam, N., Mohan Raj G, B. et al. Effect of vinyl silane–treated plant root waste biomass cellulose on pineapple fiber-vinyl ester composites: a characterization study. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05894-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05894-7

Keywords