fundamentals-and-industrial-applications-of-modern-genetic-engineering-–-springer

Fundamentals and Industrial Applications of Modern Genetic Engineering – Springer

  • Adrio JL, Demain AL (2010) Recombinant organisms for production of industrial products. Bioeng Bugs 1(2):116–131

  • Aigner A (2006) Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J Biotechnol 124(1):12–25

  • Alewu B, Nosiri C (2011) Pesticides and human health. In: Pesticides in the modern world–effects of pesticides exposure. InTech, pp 231–250

  • Ali I, Husnain T, Riazuddin S (2008) RNA interference: the story of gene silencing in plants and humans. Biotechnol Adv 26(3):202–209

  • Avise JC (2004) The hope, hype, and reality of genetic engineering: remarkable stories from agriculture, industry, medicine, and the environment. Oxford University Press

  • Baeshen NA, Baeshen MN, Sheikh A, Bora RS, Ahmed MMM, Ramadan HA, Redwan EM (2014) Cell factories for insulin production. Microb Cell Fact 13(1):1–9

  • Bakhsh A, Baloch FS, Hatipoğlu R, Özkan H (2015) Use of genetic engineering: benefits and health concerns. In: Handbook of vegetable preservation and processing, 2nd edn, pp 81–112

  • Banerjee G, Ray AK (2017) Impact of microbial proteases on biotechnological industries. Biotechnol Genet Eng Rev 33(2):119–143

  • Batista R, Oliveira MM (2009) Facts and fiction of genetically engineered food. Trends Biotechnol 27(5):277–286

  • Bernal C, Rodriguez K, Martinez R (2018) Integrating enzyme immobilization and protein engineering: an alternative path for the development of novel and improved industrial biocatalysts. Biotechnol Adv 36(5):1470–1480

  • Bhatia S, Sharma K, Dahiya R, Bera T (2015) Modern applications of plant biotechnology in pharmaceutical sciences. Academic

  • Bhopale GM, Nanda RK (2005) Recombinant DNA expression products for human therapeutic use. Curr Sci 89(4):614–622

  • Cheng BQ, Wei LJ, Lv YB, Chen J, Hua Q (2019) Elevating limonene production in oleaginous yeast Yarrowia lipolytica via genetic engineering of limonene biosynthesis pathway and optimization of medium composition. Biotechnol Bioprocess Eng 24:500–506

  • Cheng Q, Dai Z, Smbatyan G, Epstein AL, Lenz HJ, Zhang Y (2022) Eliciting anti-cancer immunity by genetically engineered multifunctional exosomes. Mol Ther 30(9):3066–3077

  • Cohen SNA, Changes AC, Boyer L et al (1973) Build of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70(11):3240–3244

  • Contesini FJ, Melo RRD, Sato HH (2018) An overview of Bacillus proteases: from production to application. Crit Rev Biotechnol 38(3):321–334

  • Daniell H, Dhingra A, Fernandez-San Millan A (2001) Chloroplast transgenic approach for the production of antibodies, biopharmaceuticals and edible vaccines. Sci Access 3(1)

  • Datta A (2013) Genetic engineering for improving quality and productivity of crops. Agric Food Secur 2(1):1–3

  • Doelle HW, Rokem JS, Berovic M (eds) (2009). Biotechnology, vol VIII: Fundamentals in biotechnology. EOLSS Publications

  • Downward J (2004) RNA interference. Br Med J 328(7450):1245–1248

  • Dunham T, Wells JG, White K (2002) Biotechnology education: a multiple instructional strategies approach. J Technol Educ 14(1)

  • Ehrenreich A (2006) DNA microarray technology for the microbiologist: an overview. Appl Microbiol Biotechnol 73:255–273

  • Ellahi B (1994) Genetic engineering for food production—what is it all about? Br Food J 96(8):13–23

  • Falch EA (1991) Industrial enzymes—developments in production and application. Biotechnol Adv 9(4):643–658

  • Ghosh A, Khanra S, Mondal M, Halder G, Tiwari ON, Saini S, Gayen K (2016) Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value-added chemicals: a review. Energy Convers Manag 113:104–118

  • Glick BR, Patten CL (2022) Molecular biotechnology: principles and applications of recombinant DNA. Wiley, Hoboken

  • Goicoechea N, Antolín MC (2017) Increased nutritional value in food crops. Microb Biotechnol 10(5):1004–1007

  • Govil CM, Aggarwal A, Sharma J (2017) Plant biotechnology and genetic engineering. PHI Learning, Delhi

  • Gulmez C, Atakisi O, Dalginli KY, Atakisi E (2018) A novel detergent additive: organic solvent-and thermo-alkaline-stable recombinant subtilisin. Int J Biol Macromol 108:436–443

  • Hegde K, Chandra N, Sarma SJ, Brar SK, Veeranki VD (2015) Genetic engineering strategies for enhanced biodiesel production. Mol Biotechnol 57(7):606–624. https://doi.org/10.1007/s12033-015-9869-y

  • Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4(1):129–153

  • Hirakawa MP, Krishnakumar R, Timlin JA, Carney JP, Butler KS (2020) Gene editing and CRISPR in the clinic: current and future perspectives. Biosci Rep 40(4):BSR20200127

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffmann N (1984) Inheritance of functional foreign genes in plants. Science 223(4635):496–498

  • Johnson IS (1983) Human insulin from recombinant DNA technology. Science 219(4585):632–637

  • Jones MD, Fayerman JT (1987) Industrial applications of recombinant DNA technology. J Chem Educ 64(4):337

  • Kadkhodaei S, Memari HR, Abbasiliasi S, Rezaei MA, Movahedi A, Shun TJ, Ariff AB (2016) Multiple overlap extension PCR (MOE-PCR): an effective technical shortcut to high throughput synthetic biology. RSC Adv 6(71):66682–66694

  • Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F, Collins JJ (2021) CRISPR-based diagnostics. Nat Biomed Eng 5(7):643–656

  • Kapoor S, Rafiq A, Sharma S (2017) Protein engineering and its applications in food industry. Crit Rev Food Sci Nutr 57(11):2321–2329

  • Khan FA (2011) Biotechnology fundamentals. CRC Press, Boca Raton

  • Kiki MJ (2023) Biopigments of microbial origin and their application in the cosmetic industry. Cosmetics 10(2):47

  • Kim M, Kim SC, Song KJ, Kim HB, Kim IJ, Song EY, Chun SJ (2010) Transformation of carotenoid biosynthetic genes using a micro-cross section method in kiwifruit (Actinidia deliciosa cv. Hayward). Plant Cell Rep 29:1339–1349

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

  • Kramer MG, Redenbaugh K (1994) Commercialization of a tomato with an antisense polygalacturonase gene: the FLAVR SAVR™ tomato story. Euphytica 79:293–297

  • Kumar S, Kumar A (2015) Role of genetic engineering in agriculture. Plant Arch 15(1):1–6

  • Kurup VM, Thomas J (2020) Edible vaccines: promises and challenges. Mol Biotechnol 62:79–90

  • Lee SY, Lee DY, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23(7):349–358

  • Lee S, Mattanovich D, Villaverde A (2012) Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microb Cell Fact 11:1–3

  • Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12(4):387–391

  • Lin H, Wang Q, Shen Q, Zhan J, Zhao Y (2013) Genetic engineering of microorganisms for biodiesel production. Bioengineered 4(5):292–304

  • Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25(1):1234–1257

  • Liu X, Wu M, Wang M, Duan Y, Phan C, Qi G et al (2021) Metabolically engineered bacteria as light-controlled living therapeutics for anti-angiogenesis tumor therapy. Mater Horiz 8(5):1454–1460

  • Lopes AMM, Martins M, Goldbeck R (2021) Heterologous expression of lignocellulose-modifying enzymes in microorganisms: current status. Mol Biotechnol 63:184–199. https://doi.org/10.1007/s12033-020-00288-2

  • Maibam PD, Goyal A (2022) Approach to an efficient pretreatment method for rice straw by deep eutectic solvent for high saccharification efficiency. Bioresour Technol 351:127057

  • Maurer KH (2004) Detergent proteases. Curr Opin Biotechnol 15(4):330–334

  • Meyer V (2008) Genetic engineering of filamentous fungi—progress, obstacles and future trends. Biotechnol Adv 26(2):177–185

  • Mishra N, Gupta PN, Khatri K, Goyal AK, Vyas SP (2008) Edible vaccines: a new approach to oral immunization

  • Mitra S, Tomar PC (2021) Hybridoma technology; advancements, clinical significance, and future aspects. J Genet Eng Biotechnol 19(1):1–12

  • Mohanraju P, Saha C, van Baarlen P, Louwen R, Staals RH, van der Oost J (2022) Alternative functions of CRISPR–Cas systems in the evolutionary arms race. Nat Rev Microbiol 20(6):351–364

  • Moon SB, Kim DY, Ko JH, Kim YS (2019) Recent advances in the CRISPR genome editing tool set. Exp Mol Med 51(11):1–11

  • Muñoz CF, Südfeld C, Naduthodi MI, Weusthuis RA, Barbosa MJ, Wijffels RH, D’Adamo S (2021) Genetic engineering of microalgae for enhanced lipid production. Biotechnol Adv 52:107836

  • Nair AJ (2008) Introduction to biotechnology and genetic engineering. Laxmi Publications, New Delhi

  • Nath P, Dhillon A, Kumar K, Sharma K, Jamaldheen SB, Moholkar VS, Goyal A (2019) Development of bi-functional chimeric enzyme (CtGH1-L1-CtGH5-F194A) from endoglucanase (CtGH5) mutant F194A and β-1, 4-glucosidase (CtGH1) from Clostridium thermocellum with enhanced activity and structural integrity. Bioresour Technol 282:494–501

  • Office of Technology Assessment (OTA) of the Congress of the United States (1988) U.S. investment in biotechnology—Special report. Westview Press, Boulder, CO

  • Office of Technology Assessment (OTA) of the Congress of the United States (1991) Biotechnology in a global economy. Government Printing Office, Washington DC

  • Pang J, Matsuda M, Kuroda M, Inoue D, Sei K, Nishida K, Ike M (2016) Characterization of the genes involved in nitrogen cycling in wastewater treatment plants using DNA microarray and most probable number-PCR. Front Environ Sci Eng 10:1–10

  • Paoletti MG, Pimentel D (1996) Genetic engineering in agriculture and the environment. Bioscience 46(9):665–673

  • Park SY, Binkley RM, Kim WJ, Lee MH, Lee SY (2018) Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metab Eng 49:105–115

  • Pimentel D, Hunter MS, LaGro JA, Efroymson RA, Landers JC, Mervis FT, Boyd AE (1989) Benefits and risks of genetic engineering in agriculture. Bioscience 39(9):606–614

  • Pongsupasa V, Anuwan P, Maenpuen S, Wongnate T (2022) Rational-design engineering to improve enzyme thermostability. In: Enzyme engineering: methods and protocols, pp 159–178

  • Ramchuran S, Nordberg Karlsson E, Velut S, de Maré L, Hagander P, Holst O (2002) Production of heterologous thermostable glycoside hydrolases and the presence of host-cell proteases in substrate limited fed-batch cultures of Escherichia coli BL21 (DE3). Appl Microbiol Biotechnol 60:408–416

  • Rao MPN, Xiao M, Li W-J (2017) Fungal and bacterial pigments: secondary metabolites with wide applications. Front Microbiol 8:1113

  • Ribeiro LF, Xiong T, Hauk P, Ribeiro LF (2016) Protein engineering strategies to improve efficiency in biomass degradation. In: Mycology: current and future developments, vol 1, pp 202–221

  • Robitaille G, Tremblay A, Moineau S, St-Gelais D, Vadeboncoeur C, Britten M (2009) Fat-free yogurt made using a galactose-positive exopolysaccharide-producing recombinant strain of Streptococcus thermophilus. J Dairy Sci 92(2):477–482

  • Roque ACA, Lowe CR, Taipa MÂ (2004) Antibodies and genetically engineered related molecules: production and purification. Biotechnol Prog 20(3):639–654

  • Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in microbial systems. Front Microbiol 5:341

  • Saini DK, Chakdar H, Pabbi S, Shukla P (2020) Enhancing production of microalgal biopigments through metabolic and genetic engineering. Crit Rev Food Sci Nutr 60(3):391–405

  • Shen AY, Van de Goor J, Zheng L, Reyes AE, Krummen LA (2005) Recombinant DNA technology and cell line development. Biotechnol Bioprocess Ser 30:15

  • Singh RK, Tiwari MK, Singh R, Lee JK (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14(1):1232–1277

  • Tabatabaei M, Tohidfar M, Jouzani GS, Safarnejad M, Pazouki M (2011) Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renew Sust Energ Rev 15(4):1918–1927

  • Uzogara SG (2000) The impact of genetic modification of human foods in the 21st century: a review. Biotechnol Adv 18(3):179–206

  • Valenta R, Ferreira F, Focke-Tejkl M, Linhart B, Niederberger V, Swoboda I, Vrtala S (2009) From allergen genes to allergy vaccines. Annu Rev Immunol 28:211–241

  • Velvizhi G, Jacqueline PJ, Shetti NP, Latha K, Mohanakrishna G, Aminabhavi TM (2023) Emerging trends and advances in valorization of lignocellulosic biomass to biofuels. J Environ Manag 345:118527

  • Ventimiglia G, Petralia S (2013) Recent advances in DNA microarray technology: an overview on production strategies and detection methods. BioNanoScience 3:428–450

  • Vojcic L, Pitzler C, Körfer G, Jakob F, Martinez R, Maurer KH, Schwaneberg U (2015) Advances in protease engineering for laundry detergents. New Biotechnol 32(6):629–634

  • Wang JY, Doudna JA (2023) CRISPR technology: a decade of genome editing is only the beginning. Science 379(6629):eadd8643

  • Wang L, Li PC (2011) Microfluidic DNA microarray analysis: a review. Anal Chim Acta 687(1):12–27

  • Watson JD, Crick FH (1953) The structure of DNA. In: Cold Spring Harbor symposia on quantitative biology, vol. 18. Cold Spring Harbor Laboratory Press, pp 123–131

  • Wei D, Zhang W, Wang C, Meng Q, Li G, Chen TH, Yang X (2017) Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Plant Sci 257:74–83

  • Willemsen T, Hagemann UB, Jouaux EM, Stebel SC, Mason JM, Müller KM, Arndt KM (2008) Protein engineering. In: Molecular biomethods handbook, pp 587–629

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451):303–305

  • Yeom J, Park JS, Jung SW, Lee S, Kwon H, Yoo SM (2023) High-throughput genetic engineering tools for regulating gene expression in a microbial cell factory. Crit Rev Biotechnol 43(1):82–99

  • Young DD, Garner RA, Yoder JA, Deiters A (2009) Light-activation of gene function in mammalian cells via ribozymes. Chem Commun 5:568–570

  • Zaroff S, Tan G (2019) Hybridoma technology: the preferred method for monoclonal antibody generation for in vivo applications. Biotechniques 67(3):90–92

  • Zhang H, Diao H, Jia L, Yuan Y, Thamm DH, Wang H et al (2017) Proteus mirabilis inhibits cancer growth and pulmonary metastasis in a mouse breast cancer model. PLoS One 12(12):e0188960

  • Zhang K, Jiang D, Liebl W, Wang M, Gu L, Liu Z, Ehrenreich A (2023) Confirmation of glucose transporters through targeted mutagenesis and transcriptional analysis in Clostridium acetobutylicum. Fermentation 9(1):64

  • Zimmermann MB, Hurrell RF (2002) Improving iron, zinc and vitamin A nutrition through plant biotechnology. Curr Opin Biotechnol 13(2):142–145