Abdalati W et al (2010) The ICESat-2 laser altimetry mission. Proc IEEE 98:735–751
Ajmar A, Boccardo P, Broglia M, Kucera J, Wania A (2017) Response to flood events: the role of satellite-based emergency mapping and the experience of the Copernicus emergency management service. In: Flood damage survey and assessment: new insights from research and practice. Wiley, pp 213–228
Anantrasirichai N, Biggs J, Albino F, Hill P, Bull D (2018) Application of machine learning to classification of volcanic deformation in routinely generated InSAR data. J Geophys Res Solid Earth 123:6592–6606
Anantrasirichai N, Biggs J, Albino F, Bull D (2019) A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets. Remote Sens Environ 230:111179
Anderson K, Segall P (2011) Physics-based models of ground deformation and extrusion rate at effusively erupting volcanoes. J Geophys Res Solid Earth 116:2010JB007939
Aspinall WP (2006) Structured elicitation of expert judgment for probabilistic hazard and risk assessment in volcanic eruptions. Stat Volcanol 1:15–30
Attema E et al (2008) Sentinel-1 ESA’s new European radar observatory. EUSAR 2008
Bagnardi M, Hooper A (2018) Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: a Bayesian approach. Geochem Geophys Geosyst 19(7):2194–2211
Bally PE (2012) Scientific and technical memorandum of the international forum on satellite EO and geohazards, 21–23 May 2012, Santorini Greece. https://doi.org/10.5270/esa-geo-hzrd-2012
Barnie T, Oppenheimer C (2016) Inverting multispectral thermal time-series images of volcanic eruptions for lava emplacement models. Geol Soc Lond, Spec Publ 426:257–276
Bechor NB, Zebker HA (2006) Measuring two-dimensional movements using a single InSAR pair. Geophys Res Lett 33. https://doi.org/10.1029/2006GL026883
Bessho K et al (2016) An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J Meteorol Soc Jpn Ser II 94:151–183
Boshuizen C, Mason J, Klupar P, Spanhake S (2014) Results from the planet labs flock constellation. In: Proceedings of the 28th annual AIAA/USU conference on small satellites, Logan, UT, USA
Breit H et al (2009) TerraSAR-X SAR processing and products. IEEE Trans Geosci Remote Sens 48:727–740
Burgmann R, Rosen P, Fielding E (2000) Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu Rev Earth Planet Sci 28:169–209
Carboni E, Grainger R, Walker J, Dudhia A, Siddans R (2012) A new scheme for sulphur dioxide retrieval from IASI measurements: application to the Eyjafjallajökull eruption of April and May 2010. Atmos Chem Phys 12:11417–11434
Carboni E et al (2016) The vertical distribution of volcanic SO2 plumes measured by IASI. Atmos Chem Phys 16:4343–4367
CEOS (2013) CEOS disaster risk management observation strategy. CEOS
Chaussard E, Bürgmann R, Shirzaei M, Fielding E, Baker B (2014) Predictability of hydraulic head changes and characterization of aquifer-system and fault properties from InSAR-derived ground deformation. J Geophys Res Solid Earth 119:6572–6590
Cocco M (2023) EGU general assembly conference abstracts
Commission, P. F. t. E (2019) Copernicus market report—February 2019. Copernicus EU
Copernicus (2019) Europe’s eyes on Earth: looking at our planet and its environment for the ultimate benefit of all European citizens. https://www.copernicus.eu
Costa A, Macedonio G (2005) Computational modeling of lava flows: a review. Spec Pap Geol Soc Am 396:209
Côté IM, Darling ES (2018) Scientists on Twitter: preaching to the choir or singing from the rooftops? FACETS 3:682–694. https://doi.org/10.1139/facets-2018-0002
Crosetto M et al (2020) The evolution of wide-area DInSAR: from regional and national services to the European Ground Motion Service. Remote Sens 12:2043
Deilami K, Hashim M (2011) Very high resolution optical satellites for DEM generation: a review. Eur J Sci Res 49:542–554
Dietterich HR et al (2012) Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence. Geochem Geophys Geosyst 13:5001
Dittus M, Quattrone G, Capra L (2017) Proceedings of the 2017 ACM conference on computer supported cooperative work and social computing. ACM, pp 1290–1303
Dubayah R et al (2015) AGU fall meeting abstracts
Ebmeier SK (2016) Application of independent component analysis to multitemporal InSAR data with volcanic case studies. J Geophys Res Solid Earth 121:8970–8986
Ebmeier SK et al (2016) Shallow earthquake inhibits unrest near Chiles–Cerro Negro volcanoes, Ecuador–Colombian border. Earth Planet Sci Lett 450:283–291
Ebmeier S et al (2018) Synthesis of global satellite observations of magmatic and volcanic deformation: implications for volcano monitoring & the lateral extent of magmatic domains. J Appl Volcanol 7:2
Elliott J et al (2015) Earthquake monitoring gets boost from new satellite. Eos 96. https://doi.org/10.1029/2015EO023967
Elliott J, Walters R, Wright T (2016) The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nat Commun 7:13844
Gaddes ME, Hooper A, Bagnardi M, Inman H, Albino F (2018) Blind signal separation methods for InSAR: the potential to automatically detect and monitor signals of volcanic deformation. J Geophys Res Solid Earth 123(11):10,226–10,251
Galve J et al (2017) Evaluation of the SBAS InSAR service of the European space Agency’s Geohazard Exploitation Platform (GEP). Remote Sens 9:1291
Goetz JN, Brenning A, Petschko H, Leopold P (2015) Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput Geosci 81:1–11
Gorelick N et al (2017) Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27
Grandin R, Klein E, Métois M, Vigny C (2016) Three-dimensional displacement field of the 2015 Mw8. 3 Illapel earthquake (Chile) from across-and along-track Sentinel-1 TOPS interferometry. Geophys Res Lett 43:2552–2561
Guarnieri AM et al (2022) Living planet symposium, paper no. ESA SP-722
Gudmundsson MT et al (2016) Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science 353:aaf8988. https://doi.org/10.1126/science.aaf8988
Hauschildt H, Mezzasoma S, Moeller HL, Witting M, Herrmann J (2017) 2017 IEEE international conference on space optical systems and applications (ICSOS). IEEE, pp 15–18
Hausknecht G (2018) 80th EAGE conference & exhibition 2018 workshop programme
Heidt H, Puig-Suari J, Moore A, Nakasuka S, Twiggs R (2000) CubeSat: a new generation of picosatellite for education and industry low-cost space experimentation. In: 14th annual/USU conference on small satellites
Herwanger JV (2019) 4D geomechanical simulations for field development planning. J Pet Geomech 3:34–44
Hicks SP (2019) Geoscience analysis on Twitter. Nat Geosci 12:585–586
Höfle B, Rutzinger M (2011) Topographic airborne LiDAR in geomorphology: a technological perspective. Zeitschrift für Geomorphologie Suppl Issues 55:1–29
Hooper A, Bekaert D, Spaans K, Arıkan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514:1–13
Hudak AT, Evans JS, Stuart Smith AM (2009) LiDAR utility for natural resource managers. Remote Sens 1:934–951
Hussain E et al (2018) Constant strain accumulation rate between major earthquakes on the North Anatolian Fault. Nat Commun 9:1392
Illingworth AJ et al (2015) The EarthCARE satellite: the next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull Am Meteorol Soc 96:1311–1332
Ishii K, Hayashi Y, Shimbori T (2018) Using Himawari-8, estimation of SO2 cloud altitude at Aso volcano eruption, on October 8, 2016. Earth Planets Space 70:19
Jibson RW, Harp EL, Michael JA (2000) A method for producing digital probabilistic seismiclandslide hazard maps. Eng Geol 58:271–289. https://doi.org/10.1016/S0013-7952(00)00039-9
Jin D, Wang X, Dou A, Dong Y (2011) Post-earthquake building damage assessment in Yushu using airborne SAR imagery. Earthq Sci 24:463–473
Jung H-S, Lu Z, Shepherd A, Wright T (2015) Simulation of the SuperSAR multi-azimuth synthetic aperture radar imaging system for precise measurement of three-dimensional Earth surface displacement. IEEE Trans Geosci Remote Sens 53:6196–6206
Krieger G et al (2013) TanDEM-X: a radar interferometer with two formation-flying satellites. Acta Astronaut 89:83–98
Krishnan S et al (2011) Proceedings of the 2nd international conference on computing for geospatial research & applications. ACM, p 7
Lazecký M et al (2020) LiCSAR: an automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sens 12:2430
López-Dekker P et al (2019) IGARSS 2019–2019 IEEE international geoscience and remote sensing symposium. IEEE, pp 8381–8384
Lu Z, Rykhus R, Masterlark T, Dean KG (2004) Mapping recent lava flows at Westdahl Volcano, Alaska, using radar and optical satellite imagery. Remote Sens Environ 91:345–353
Madsen S, Edelstein W, DiDomenico LD, LaBrecque J (2001) IGARSS 2001. Scanning the present and resolving the future. Proceedings. IEEE 2001 international geoscience and remote sensing symposium (Cat. No. 01CH37217). IEEE, pp 447–449
McCormick BT, Edmonds M, Mather TA, Carn SA (2012) First synoptic analysis of volcanic degassing in Papua New Guinea. Geochem Geophys Geosyst 13:3008
McGonigle A et al (2008) Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes. Geophys Res Lett 35. https://doi.org/10.1029/2007GL032508
Meyer F et al (2015) AGU fall meeting abstracts
Montesano P et al (2015) The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient. Remote Sens Environ 158:95–109
Müller D et al (2017) High-resolution digital elevation modeling from TLS and UAV campaign reveals structural complexity at the 2014/2015 Holuhraun eruption site, Iceland. Front Earth Sci 5:59
Naghibi SA, Pourghasemi HR, Dixon B (2016) GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess 188:44
National Academies of Sciences, E., and Medicine (2018) Thriving on our changing planet: a decadal strategy for Earth observation from space. National Academies Press
Owen SE et al (2015) AGU fall meeting abstracts
Patterson TC (2007) Google Earth as a (not just) geography education tool. J Geogr 106:145–152
Planet (2019) Planet monitoring. https://www.planet.com/products/monitoring/
Porter C et al (2018) ArcticDEM. Harvard Dataverse 1. https://doi.org/10.7910/DVN/OHHUKH
Pritchard M et al (2018) Towards coordinated regional multi-satellite InSAR volcano observations: results from the Latin America pilot project. J Appl Volcanol 7:5
Rosen P et al (2017) 2017 IEEE international geoscience and remote sensing symposium (IGARSS). IEEE, pp 3832–3835
Sacchi C, Bhasin K, Kadowaki N, Vong F (2015) Toward the “space 2.0” era [Guest Editorial]. IEEE Commun Mag 53:16–17
Scheiber R, Moreira A (2000) Coregistration of interferometric SAR images using spectral diversity. IEEE Trans Geosci Remote Sens 38:2179–2191
Schmitt A, Wendleder A, Roth A, Brisco B (2014) 2014 IEEE geoscience and remote sensing symposium, pp 1175–1178
Schutz BE, Zwally H, Shuman C, Hancock D, DiMarzio J (2005) Overview of the ICESat mission. Geophys Res Lett 32. https://doi.org/10.1029/2005GL024009
Segall P (2013) Volcano deformation and eruption forecasting. Geol Soc Lond, Spec Publ 380:85–106
Sennert SSK, Klemetti EW, Bird DK (2018) In: Fearnley CJ et al (eds) Observing the volcano world: volcano crisis communication. Springer, pp 733–743
Sofia G, Bailly J-S, Chehata N, Tarolli P, Levavasseur F (2016) Comparison of pleiades and LiDAR digital elevation models for terraces detection in farmlands. IEEE J Sel Top Appl Earth Obs Remote Sens 9:1567–1576
Sparks RSJ, Biggs J, Neuberg J (2012) Monitoring volcanoes. Science 335:1310–1311
Steed RJ et al (2019) Crowdsourcing triggers rapid, reliable earthquake locations. Sci Adv 5:eaau9824. https://doi.org/10.1126/sciadv.aau9824
Stephens K, Wauthier C (2018) Satellite geodesy captures offset magma supply associated with lava lake appearance at Masaya volcano, Nicaragua. Geophys Res Lett 45:2669–2678
Tassa A (2019) The socio-economic value of satellite earth observations: huge, yet to be measured. J Econ Policy Reform:1–15. https://doi.org/10.1080/17487870.2019.1601565
Taylor IA et al (2018) Exploring the utility of IASI for monitoring volcanic SO2 emissions. J Geophys Res Atmos 123:5588–5606
Theys N et al (2019) Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 precursor. Sci Rep 9:2643
Tomiyasu K (1978) Synthetic aperture radar in geosynchronous orbit. In: 1978 Antennas and Propagation Society International Symposium. IEEE
Ventress LJ, McGarragh G, Carboni E, Smith AJ, Grainger RG (2016) Retrieval of ash properties from IASI measurements. Atmos Meas Tech 9:5407–5422
Wadge G, Saunders S, Itikarai I (2012) Pulsatory andesite lava flow at Bagana Volcano. Geochem Geophys Geosyst 13:Q11011
Werninghaus R, Buckreuss S (2009) The TerraSAR-X mission and system design. IEEE Trans Geosci Remote Sens 48:606–614
Williams R, Krippner J (2018) The use of social media in volcano science communication: challenges and opportunities. Volcanica 1:i–viii
Williams JG et al (2018) Satellite-based emergency mapping using optical imagery: experience and reflections from the 2015 Nepal earthquakes. Nat Hazards Earth Syst Sci 18:185–205
Woodcock CE et al (2008) Free access to Landsat imagery. Science 320:1011–1011
Wright R, Flynn LP, Garbeil H, Harris AJ, Pilger E (2004a) MODVOLC: near-real-time thermal monitoring of global volcanism. J Volcanol Geotherm Res 135:29–49
Wright T, Parsons B, Lu Z (2004b) Toward mapping surface deformation in three dimensions using InSAR. Geophys Res Lett 31. https://doi.org/10.1029/2003GL018827
Yun S-H, Fielding EJ, Webb FH, Simons M (2015) Google Patents
Zhang K et al (2003) A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Trans Geosci Remote Sens 41:872–882
Zhu Z et al (2019) Benefits of the free and open Landsat data policy. Remote Sens Environ 224:382–385. https://doi.org/10.1016/j.rse.2019.02.016