future-of-remote-sensing-for-geohazards-and-resource-monitoring-–-springer

Future of Remote Sensing for Geohazards and Resource Monitoring – Springer

  • Abdalati W et al (2010) The ICESat-2 laser altimetry mission. Proc IEEE 98:735–751

  • Ajmar A, Boccardo P, Broglia M, Kucera J, Wania A (2017) Response to flood events: the role of satellite-based emergency mapping and the experience of the Copernicus emergency management service. In: Flood damage survey and assessment: new insights from research and practice. Wiley, pp 213–228

  • Anantrasirichai N, Biggs J, Albino F, Hill P, Bull D (2018) Application of machine learning to classification of volcanic deformation in routinely generated InSAR data. J Geophys Res Solid Earth 123:6592–6606

  • Anantrasirichai N, Biggs J, Albino F, Bull D (2019) A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets. Remote Sens Environ 230:111179

  • Anderson K, Segall P (2011) Physics-based models of ground deformation and extrusion rate at effusively erupting volcanoes. J Geophys Res Solid Earth 116:2010JB007939

  • Aspinall WP (2006) Structured elicitation of expert judgment for probabilistic hazard and risk assessment in volcanic eruptions. Stat Volcanol 1:15–30

  • Attema E et al (2008) Sentinel-1 ESA’s new European radar observatory. EUSAR 2008

  • Bagnardi M, Hooper A (2018) Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: a Bayesian approach. Geochem Geophys Geosyst 19(7):2194–2211

  • Bally PE (2012) Scientific and technical memorandum of the international forum on satellite EO and geohazards, 21–23 May 2012, Santorini Greece. https://doi.org/10.5270/esa-geo-hzrd-2012

  • Barnie T, Oppenheimer C (2016) Inverting multispectral thermal time-series images of volcanic eruptions for lava emplacement models. Geol Soc Lond, Spec Publ 426:257–276

  • Bechor NB, Zebker HA (2006) Measuring two-dimensional movements using a single InSAR pair. Geophys Res Lett 33. https://doi.org/10.1029/2006GL026883

  • Bessho K et al (2016) An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J Meteorol Soc Jpn Ser II 94:151–183

  • Boshuizen C, Mason J, Klupar P, Spanhake S (2014) Results from the planet labs flock constellation. In: Proceedings of the 28th annual AIAA/USU conference on small satellites, Logan, UT, USA

  • Breit H et al (2009) TerraSAR-X SAR processing and products. IEEE Trans Geosci Remote Sens 48:727–740

  • Burgmann R, Rosen P, Fielding E (2000) Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu Rev Earth Planet Sci 28:169–209

  • Carboni E, Grainger R, Walker J, Dudhia A, Siddans R (2012) A new scheme for sulphur dioxide retrieval from IASI measurements: application to the Eyjafjallajökull eruption of April and May 2010. Atmos Chem Phys 12:11417–11434

  • Carboni E et al (2016) The vertical distribution of volcanic SO2 plumes measured by IASI. Atmos Chem Phys 16:4343–4367

  • CEOS (2013) CEOS disaster risk management observation strategy. CEOS

  • Chaussard E, Bürgmann R, Shirzaei M, Fielding E, Baker B (2014) Predictability of hydraulic head changes and characterization of aquifer-system and fault properties from InSAR-derived ground deformation. J Geophys Res Solid Earth 119:6572–6590

  • Cocco M (2023) EGU general assembly conference abstracts

  • Commission, P. F. t. E (2019) Copernicus market report—February 2019. Copernicus EU

  • Copernicus (2019) Europe’s eyes on Earth: looking at our planet and its environment for the ultimate benefit of all European citizens. https://www.copernicus.eu

  • Costa A, Macedonio G (2005) Computational modeling of lava flows: a review. Spec Pap Geol Soc Am 396:209

  • Côté IM, Darling ES (2018) Scientists on Twitter: preaching to the choir or singing from the rooftops? FACETS 3:682–694. https://doi.org/10.1139/facets-2018-0002

  • Crosetto M et al (2020) The evolution of wide-area DInSAR: from regional and national services to the European Ground Motion Service. Remote Sens 12:2043

  • Deilami K, Hashim M (2011) Very high resolution optical satellites for DEM generation: a review. Eur J Sci Res 49:542–554

  • Dietterich HR et al (2012) Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence. Geochem Geophys Geosyst 13:5001

  • Dittus M, Quattrone G, Capra L (2017) Proceedings of the 2017 ACM conference on computer supported cooperative work and social computing. ACM, pp 1290–1303

  • Dubayah R et al (2015) AGU fall meeting abstracts

  • Ebmeier SK (2016) Application of independent component analysis to multitemporal InSAR data with volcanic case studies. J Geophys Res Solid Earth 121:8970–8986

  • Ebmeier SK et al (2016) Shallow earthquake inhibits unrest near Chiles–Cerro Negro volcanoes, Ecuador–Colombian border. Earth Planet Sci Lett 450:283–291

  • Ebmeier S et al (2018) Synthesis of global satellite observations of magmatic and volcanic deformation: implications for volcano monitoring & the lateral extent of magmatic domains. J Appl Volcanol 7:2

  • Elliott J et al (2015) Earthquake monitoring gets boost from new satellite. Eos 96. https://doi.org/10.1029/2015EO023967

  • Elliott J, Walters R, Wright T (2016) The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nat Commun 7:13844

  • Gaddes ME, Hooper A, Bagnardi M, Inman H, Albino F (2018) Blind signal separation methods for InSAR: the potential to automatically detect and monitor signals of volcanic deformation. J Geophys Res Solid Earth 123(11):10,226–10,251

  • Galve J et al (2017) Evaluation of the SBAS InSAR service of the European space Agency’s Geohazard Exploitation Platform (GEP). Remote Sens 9:1291

  • Goetz JN, Brenning A, Petschko H, Leopold P (2015) Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput Geosci 81:1–11

  • Gorelick N et al (2017) Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27

  • Grandin R, Klein E, Métois M, Vigny C (2016) Three-dimensional displacement field of the 2015 Mw8. 3 Illapel earthquake (Chile) from across-and along-track Sentinel-1 TOPS interferometry. Geophys Res Lett 43:2552–2561

  • Guarnieri AM et al (2022) Living planet symposium, paper no. ESA SP-722

  • Gudmundsson MT et al (2016) Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science 353:aaf8988. https://doi.org/10.1126/science.aaf8988

  • Hauschildt H, Mezzasoma S, Moeller HL, Witting M, Herrmann J (2017) 2017 IEEE international conference on space optical systems and applications (ICSOS). IEEE, pp 15–18

  • Hausknecht G (2018) 80th EAGE conference & exhibition 2018 workshop programme

  • Heidt H, Puig-Suari J, Moore A, Nakasuka S, Twiggs R (2000) CubeSat: a new generation of picosatellite for education and industry low-cost space experimentation. In: 14th annual/USU conference on small satellites

  • Herwanger JV (2019) 4D geomechanical simulations for field development planning. J Pet Geomech 3:34–44

  • Hicks SP (2019) Geoscience analysis on Twitter. Nat Geosci 12:585–586

  • Höfle B, Rutzinger M (2011) Topographic airborne LiDAR in geomorphology: a technological perspective. Zeitschrift für Geomorphologie Suppl Issues 55:1–29

  • Hooper A, Bekaert D, Spaans K, Arıkan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514:1–13

  • Hudak AT, Evans JS, Stuart Smith AM (2009) LiDAR utility for natural resource managers. Remote Sens 1:934–951

  • Hussain E et al (2018) Constant strain accumulation rate between major earthquakes on the North Anatolian Fault. Nat Commun 9:1392

  • Illingworth AJ et al (2015) The EarthCARE satellite: the next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull Am Meteorol Soc 96:1311–1332

  • Ishii K, Hayashi Y, Shimbori T (2018) Using Himawari-8, estimation of SO2 cloud altitude at Aso volcano eruption, on October 8, 2016. Earth Planets Space 70:19

  • Jibson RW, Harp EL, Michael JA (2000) A method for producing digital probabilistic seismiclandslide hazard maps. Eng Geol 58:271–289. https://doi.org/10.1016/S0013-7952(00)00039-9

  • Jin D, Wang X, Dou A, Dong Y (2011) Post-earthquake building damage assessment in Yushu using airborne SAR imagery. Earthq Sci 24:463–473

  • Jung H-S, Lu Z, Shepherd A, Wright T (2015) Simulation of the SuperSAR multi-azimuth synthetic aperture radar imaging system for precise measurement of three-dimensional Earth surface displacement. IEEE Trans Geosci Remote Sens 53:6196–6206

  • Krieger G et al (2013) TanDEM-X: a radar interferometer with two formation-flying satellites. Acta Astronaut 89:83–98

  • Krishnan S et al (2011) Proceedings of the 2nd international conference on computing for geospatial research & applications. ACM, p 7

  • Lazecký M et al (2020) LiCSAR: an automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sens 12:2430

  • López-Dekker P et al (2019) IGARSS 2019–2019 IEEE international geoscience and remote sensing symposium. IEEE, pp 8381–8384

  • Lu Z, Rykhus R, Masterlark T, Dean KG (2004) Mapping recent lava flows at Westdahl Volcano, Alaska, using radar and optical satellite imagery. Remote Sens Environ 91:345–353

  • Madsen S, Edelstein W, DiDomenico LD, LaBrecque J (2001) IGARSS 2001. Scanning the present and resolving the future. Proceedings. IEEE 2001 international geoscience and remote sensing symposium (Cat. No. 01CH37217). IEEE, pp 447–449

  • McCormick BT, Edmonds M, Mather TA, Carn SA (2012) First synoptic analysis of volcanic degassing in Papua New Guinea. Geochem Geophys Geosyst 13:3008

  • McGonigle A et al (2008) Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes. Geophys Res Lett 35. https://doi.org/10.1029/2007GL032508

  • Meyer F et al (2015) AGU fall meeting abstracts

  • Montesano P et al (2015) The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient. Remote Sens Environ 158:95–109

  • Müller D et al (2017) High-resolution digital elevation modeling from TLS and UAV campaign reveals structural complexity at the 2014/2015 Holuhraun eruption site, Iceland. Front Earth Sci 5:59

  • Naghibi SA, Pourghasemi HR, Dixon B (2016) GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess 188:44

  • National Academies of Sciences, E., and Medicine (2018) Thriving on our changing planet: a decadal strategy for Earth observation from space. National Academies Press

  • Owen SE et al (2015) AGU fall meeting abstracts

  • Patterson TC (2007) Google Earth as a (not just) geography education tool. J Geogr 106:145–152

  • Planet (2019) Planet monitoring. https://www.planet.com/products/monitoring/

  • Porter C et al (2018) ArcticDEM. Harvard Dataverse 1. https://doi.org/10.7910/DVN/OHHUKH

  • Pritchard M et al (2018) Towards coordinated regional multi-satellite InSAR volcano observations: results from the Latin America pilot project. J Appl Volcanol 7:5

  • Rosen P et al (2017) 2017 IEEE international geoscience and remote sensing symposium (IGARSS). IEEE, pp 3832–3835

  • Sacchi C, Bhasin K, Kadowaki N, Vong F (2015) Toward the “space 2.0” era [Guest Editorial]. IEEE Commun Mag 53:16–17

  • Scheiber R, Moreira A (2000) Coregistration of interferometric SAR images using spectral diversity. IEEE Trans Geosci Remote Sens 38:2179–2191

  • Schmitt A, Wendleder A, Roth A, Brisco B (2014) 2014 IEEE geoscience and remote sensing symposium, pp 1175–1178

  • Schutz BE, Zwally H, Shuman C, Hancock D, DiMarzio J (2005) Overview of the ICESat mission. Geophys Res Lett 32. https://doi.org/10.1029/2005GL024009

  • Segall P (2013) Volcano deformation and eruption forecasting. Geol Soc Lond, Spec Publ 380:85–106

  • Sennert SSK, Klemetti EW, Bird DK (2018) In: Fearnley CJ et al (eds) Observing the volcano world: volcano crisis communication. Springer, pp 733–743

  • Sofia G, Bailly J-S, Chehata N, Tarolli P, Levavasseur F (2016) Comparison of pleiades and LiDAR digital elevation models for terraces detection in farmlands. IEEE J Sel Top Appl Earth Obs Remote Sens 9:1567–1576

  • Sparks RSJ, Biggs J, Neuberg J (2012) Monitoring volcanoes. Science 335:1310–1311

  • Steed RJ et al (2019) Crowdsourcing triggers rapid, reliable earthquake locations. Sci Adv 5:eaau9824. https://doi.org/10.1126/sciadv.aau9824

  • Stephens K, Wauthier C (2018) Satellite geodesy captures offset magma supply associated with lava lake appearance at Masaya volcano, Nicaragua. Geophys Res Lett 45:2669–2678

  • Tassa A (2019) The socio-economic value of satellite earth observations: huge, yet to be measured. J Econ Policy Reform:1–15. https://doi.org/10.1080/17487870.2019.1601565

  • Taylor IA et al (2018) Exploring the utility of IASI for monitoring volcanic SO2 emissions. J Geophys Res Atmos 123:5588–5606

  • Theys N et al (2019) Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 precursor. Sci Rep 9:2643

  • Tomiyasu K (1978) Synthetic aperture radar in geosynchronous orbit. In: 1978 Antennas and Propagation Society International Symposium. IEEE

  • Ventress LJ, McGarragh G, Carboni E, Smith AJ, Grainger RG (2016) Retrieval of ash properties from IASI measurements. Atmos Meas Tech 9:5407–5422

  • Wadge G, Saunders S, Itikarai I (2012) Pulsatory andesite lava flow at Bagana Volcano. Geochem Geophys Geosyst 13:Q11011

  • Werninghaus R, Buckreuss S (2009) The TerraSAR-X mission and system design. IEEE Trans Geosci Remote Sens 48:606–614

  • Williams R, Krippner J (2018) The use of social media in volcano science communication: challenges and opportunities. Volcanica 1:i–viii

  • Williams JG et al (2018) Satellite-based emergency mapping using optical imagery: experience and reflections from the 2015 Nepal earthquakes. Nat Hazards Earth Syst Sci 18:185–205

  • Woodcock CE et al (2008) Free access to Landsat imagery. Science 320:1011–1011

  • Wright R, Flynn LP, Garbeil H, Harris AJ, Pilger E (2004a) MODVOLC: near-real-time thermal monitoring of global volcanism. J Volcanol Geotherm Res 135:29–49

  • Wright T, Parsons B, Lu Z (2004b) Toward mapping surface deformation in three dimensions using InSAR. Geophys Res Lett 31. https://doi.org/10.1029/2003GL018827

  • Yun S-H, Fielding EJ, Webb FH, Simons M (2015) Google Patents

  • Zhang K et al (2003) A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Trans Geosci Remote Sens 41:872–882

  • Zhu Z et al (2019) Benefits of the free and open Landsat data policy. Remote Sens Environ 224:382–385. https://doi.org/10.1016/j.rse.2019.02.016