impact-of-wildfire-on-soil-characteristics-and-arbuscular-mycorrhizal-fungi-|-environmental-monitoring-and-assessment-–-springer

Impact of wildfire on soil characteristics and arbuscular mycorrhizal fungi | Environmental Monitoring and Assessment – Springer

References

  • Agbeshie, A. A., Abugre, S., Atta-Darkwa, T., & Awuah, R. (2022). A review of the effects of forest fire on soil properties. Journal of Forestry Research, 33(5), 1419–1441.

    Article  Google Scholar 

  • Alcañiz, M., Outeiro, L., Francos, M., & Úbeda, X. (2018). Effects of prescribed fires on soil properties: A review. Science of the Total Environment, 613, 944–957.

    Article  Google Scholar 

  • Aliasgharzadeh, N., Rastin, S. N., Towfighi, H., & Alizadeh, A. (2001). Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza, 11(3), 119–122.

    Article  CAS  Google Scholar 

  • Allison, L. E., & Moodie, C. D. (1965). Carbonate. In C. A. Black (Ed.), Methods of soil analysis (pp. 1379–1396). American Society of Agronomy.

    Google Scholar 

  • Altin, M., Gökkuş, A., Koç, A., 2005. Çayır mera ıslahı. Tarım ve Köyişleri Bakanlığı, Tarımsal Üretimi Geliştirme Genel Müdürlüğü, Çayır Mera Yem Bitkileri ve Havza Geliştirme Daire Başkanlığı, 468s, Ankara

  • Anderson, R. C., & Menges, E. S. (1997). Effects of fire on sandhill herbs: Nutrients, mycorrhizae, and biomass allocation. American Journal of Botany, 84(7), 938–948.

    Article  CAS  Google Scholar 

  • Aref, I. M., Elatta, H. A., & Ghamde, A. M. (2011). Effect of forest fires on tree diversity and some soil properties. International Journal of Agriculture & Biology, 13(5), 659–664.

    Google Scholar 

  • Arisanty, D., Jędrasiak, K., Rajiani, I., Grabara, J. (2020). The destructive impact of burned peatlands to physical and chemical properties of soil. Acta Montanistica Slovaca, 25(2)

  • Arslanturk, N. (2007). Yangının vejetasyon üzerine etkisi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 2(29), 141–153.

    Google Scholar 

  • Atalay, İ. Z. (1982). Gediz Havzası alüviyal topraklarının potasyum durumu ve bu topraklarda alınabilir potasyum miktarlarının tayininde kullanılacak yöntemler üzerinde bir araştırma. “Doktora Tezi”, E. Ü. Ziraat Fakültesi Toprak Bölümü, Fen Bilimleri Enstitüsü, İzmir

  • Barbosa, L. S., Souza, T. A. F., Lucena, E. O., da Silva, L. J. R., Laurindo, L. K., Nascimento, G. S., & Santos, D. (2021). Arbuscular mycorrhizal fungi diversity and transpiratory rate in long-term field cover crop systems from tropical ecosystem, northeastern Brazil. Symbiosis, 85, 207–216. https://doi.org/10.1007/s13199-021-00805-0

    Article  CAS  Google Scholar 

  • Bellgard, S. E., Whelan, R. J., & Muston, R. M. (1994). The impact of wildfire on vesicular-arbuscular mycorrhizal fungi and their potential to influence the reestablishment of post-fire plant communities. Mycorrhiza, 4(4), 139–146.

    Article  Google Scholar 

  • Bentley, J. R., & Fenner, R. L. (1958). Soil temperatures during burning related to post fire seedbeds on woodland range. Journal of Forest Research, 56, 737–740.

    Google Scholar 

  • Berber, A. S., Tavsanoglu, Ç., & Turgay, O. C. (2015). Türkiye’de karışık bir kestane+kayın+anadolu karaçamı ormanındaki toprak özellikleri üzerinde yüzey yangınlarının etkileri. Flamma, 6(2), 78–80.

    Google Scholar 

  • Bilmiş, T. (2010). Edirne-Keşan Korudağ Orman İşletme Şefliği Yangın Sahasında Yangının Toprak Özellikleri ve Kök Kütlesi Dinamiklerine Etkileri, Tüksek Lisans Tezi, Artvin Çoruh Üniversitesi, FBE, Orman Mühendisliği ABD, 41 S

  • Bolat, İ. (2011). Kayın, göknar ve göknar-kayın meşcerelerinde üst toprak ve ölü örtüdeki mikrobiyal biyokütle karbon (Cmic), azot (Nmic), fosfor (Pmic) ve mikrobiyal solunumun mevsimsel değişimi. Doktora Tezi, Bartın Üniversitesi, Fen Bilimleri Enstitüsü, 397s

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464–465.

    Article  Google Scholar 

  • Bremner, J. M., Mulvaney, C. S. (1982). Nitrogen-total. In: Methods of soil analysis. part 2 chemical and microbiological properties (Ed. A.L. Page), SSSA Book series No: 9, Madison, pp. 595–622

  • Campo, J., Andreu, V., Gimeno-García, E., González-Pelayo, O., & Rubio, J. L. (2008). Medium term evolution of soil aggregate stability, organic matter and calcium carbonate of a mediterranean soil burned at two different fire intensities. Advances in GeoEcology, 39, 329–344.

    CAS  Google Scholar 

  • Caon, L., Vallejo, V. R., Coen, R. J., & Geissen, V. (2014). Effects of wildfire on soil nutrients in mediterranean ecosystems. Earth Science Reviews, 139, 47–58.

    Article  CAS  Google Scholar 

  • Cepel, N. (1975). Orman yangınlarının mikroklima ve toprak özellikleri üzerine yaptığı etkiler. İstanbul Üniversitesi Orman Fakültesi Dergisi, 15(1), 71–93.

    Google Scholar 

  • Certini, G. (2005). Effects of fire on properties of forest soils: A review. Oecologia, 2005(143), 1–10.

    Article  Google Scholar 

  • Certini, G., Moya, D., Lucas-Borja, M. E., & Mastrolonardo, G. (2021). The impact of fire on soil-dwelling biota: A review. Forest Ecology and Management, 488, 118989

  • Connor, D. J., Loomis, R. S., & Cassman, K. G. (2011). Crop ecology: Productivity and management in agricultural systems. Cambridge University Press.

    Book  Google Scholar 

  • Declerck, S., Plenchette, C., & Strullu, D. G. (1995). Mycorrhizal dependency of banana (Musa acuminate, AAA group) cultivar. Plant and Soil, 176, 183–187.

    Article  CAS  Google Scholar 

  • Dhillion, S., & Anderson, R. C. (1993). Growth dynamics and associated mycorrhizal fungi of little bluestem grass [Schizachyrium scoparium (Michx.) Nash] on burned and unburned sand prairies. New Phytologist, 123, 77–91.

    Article  Google Scholar 

  • Dhillion, S. S., Anderson, R. C., & Liberta, A. E. (1988). Effect of fire on the mycorrhizal ecology of little bluestem (Schizachyrium scoparium). Canadian Journal of Botany, 66(4), 706–713.

    Article  Google Scholar 

  • Dicen, G. P., Rallos, R. V., Labides, J. L. R., & Navarrete, I. A. (2020). Vulnerability of soil organic matter to microbial decomposition as a consequence of burning. Biogeochemistry, 150(2), 123–137.

    Article  CAS  Google Scholar 

  • Dorta Almenar, I., Navarro Rivero, F. J., Arbelo, C. D., Rodríguez, A., & Notario del Pino, J. (2015). The temporal distribution of water-soluble nutrients from high mountain soils following within legume scrublando Tenerife, Canary Islands, Spain. CATENA, 135, 393–400.

    Article  CAS  Google Scholar 

  • Dove, N. C., & Hart, S. C. (2017). Fire reduces fungal species richness and in situ mycorrhizal colonization: A meta-analysis. Fire Ecology, 13, 37–65.

    Article  Google Scholar 

  • Duguy, B., Paula, S., Pausas, J., & G., Alloza, J., A., Gimeno, T., Vallejo, V., R. (2013). “Effects of climate and extreme events on wildfire regime and their ecological impacts”, Regional Assessment of Climate Change in the Mediterranean: Volume 2: Agriculture. Forests and Ecosystem Services and People, 51, 101–134.

    Google Scholar 

  • Dumontet, S., Dinel, H., Scopa, A., Mazzatura, A., & Saracino, A. (1996). Post-fire soil microbial biomass and nutrient content of a pine forest soil from a dunal Mediterranean environment. Soil Biology and Biochemistry, 28(10–11), 1467–1475.

    Article  CAS  Google Scholar 

  • Durna, F. (2016). Orman Yangınlarının Bazı Toprak Özellikleri Üzerindeki Etkilerinin Araştırılması Kahramanmaraş İli Bulutoğlu Köyü Örneği. Kahramanmaraş Sütçü İmam Üniversitesi, FBE, Orman Mühendisliği ABD, 64s

  • Eom, A. H., Hartnett, D. C., Wilson, G. W., & Figge, D. A. (1999). The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. The American Midland Naturalist, 142(1), 55–70.

    Article  Google Scholar 

  • Erkovan, Ş, Koc, A., & GÜLLAP, M. K., Erkovan, H. İ., Bilen, S. (2016). The effect of fire on the vegetation and soil properties of ungrazed short grass steppe rangeland of the Eastern Anatolia region of Turkey. Turkish Journal of Agriculture and Forestry, 40(2), 290–299.

    Article  Google Scholar 

  • Eruz, E. (1979). Toprak tuzluluğu ve bitkiler üzerindeki genel etkileri. İstanbul Üniversitesi Orman Fakültesi Dergisi, 29(2), 112–120.

    Google Scholar 

  • Ferguson, J. J., & Menge, J. A. (1982). The influence of light intensity and artificially extended photoperiod upon infection and sporulation of Glomus fasciculatus on Sudan grass and on root exudationof Sudan grass. New Phytologist, 92, 183–192.

    Article  Google Scholar 

  • Feyisa, K., Beyene, S., & Angassa, A. (2023). Impacts of fire suppression on above-ground carbon stock and soil properties in Borana rangelands, southern Ethiopia. Grassland Research, 2(1), 1–14.

    Article  Google Scholar 

  • Fisher, R., Binkley, D. (2000). Ecology and management of forest soils. John Wiley & Sons, Inc., pp. 241–261

  • Flanagan, N. E., Wang, H., Winton, S., & Richardson, C. J. (2020). Low-severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition. Global Change Biology, 26(7), 3930–3946.

    Article  Google Scholar 

  • Fonseca, F., de Figueiredo, T., Nogueira, C., & Queirós, A. (2017). Effect of prescribed fire on soil properties and soil erosion in a Mediterranean mountain area. Geoderma, 307, 172–180.

    Article  CAS  Google Scholar 

  • Forstall-Sosa, K. S., Souza, T. A. F., Lucena, E. O., Silva, S. A. I., Ferreira, J. T. A., Silva, T. N., Santos, D., & Niemeyer, J. C. (2020). Soil macroarthropod community and soil biological quality index in a green manure farming system of the Brazilian semi-arid. Biologia, 79, 907–917. https://doi.org/10.2478/s11756-020-00602-y

    Article  Google Scholar 

  • Francos, M., Úbeda, X., Pereira, P., & Alcaniz, M. (2018). Long-term impacts of wildfire on soils exposed to different fire severities. A case study in Cadiretes Massif (NE Iberian Peninsula). Science of the Total Environement, 615, 664–671.

    Article  CAS  Google Scholar 

  • Gerdemann, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal endogonespecies extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 1, 43–66.

    Google Scholar 

  • Giovanetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489–500.

    Article  Google Scholar 

  • Gómez-Rey, M. X., Couto-Vázquez, A., García-Marco, S., & González-Prieto, S. J. (2013). Impact of fire and post-fire management techniques on soil chemical properties. Geoderma, 195, 155–164.

    Article  Google Scholar 

  • González, T. M., González-Trujillo, J. D., Muñoz, A., & D. (2022). Effects of fire history on animal communities: A systematic review. Ecological Processes, 11, 11. https://doi.org/10.1186/s13717-021-00357-7

    Article  Google Scholar 

  • González-Pérez, J. A., González-Vila, F. J., Almendros, G., & Knicker, H. (2004). The effect of fire on soil organic matter—a review. Environment International, 30(6), 855–870.

    Article  Google Scholar 

  • Granged, A. J. P., Zavala, L. M., Jordan, A., & Barcenas-Moreno, G. (2011). Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: A 3-year study. Geoderma, 164, 85–94.

    Article  Google Scholar 

  • Gulcur, F. 1974. Toprağın fiziksel ve kimyasal analiz metodları. Kutulmuş Matbaası, İÜ Yayın No. 1970, Orman Fakültesi Yayın No. 201, İstanbul, 225 s

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST— palaeontological statistics software package for education and data analysis. Paleontologia Electronica, 4(1), 1–9.

    Google Scholar 

  • Heydari, M., Rostamy, A., Najafi, F., & Dey, D. C. (2017). Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests in Iran. Journal of Forestry Research, 28(1), 95–104.

    Article  CAS  Google Scholar 

  • Hinojosa, M. B., Parra, A., Laudicina, V. A., & Moreno, J. M. (2016). Post-fire soil functionality and microbial community structure in a Mediterranean shrubland subjected to experimental drought. Science of the Total Environment, 573, 1178–1189.

    Article  CAS  Google Scholar 

  • Hurlbert, S. H. (1971). The nonconcept of species diversity: A critique and alternative parameters. Ecology, 52(4), 577–586. https://doi.org/10.2307/1934145

    Article  Google Scholar 

  • SPSS Inc. (2007). SPSS for Windows, Version 18.0. Chicago: SPSS Inc.

    Google Scholar 

  • INVAM. (2020). International culture collection of arbuscular and vesicular–arbuscular mycorrhizal fungi. http://www.invam.caf.wvu.edu. (Erişim tarihi: 15 Aralık 2011).

  • Irmak, A. (1954). Arazide ve laboratuarda toprağın araştırılması metodları, İÜ Yayın No. 559, Orman Fakültesi Yayın No. 27, İstanbul, 150 s

  • Jaccard, P. (1912). The distribution of the fora in the alpine zone. 1. New Phytologist, 11(2), 37–50

  • Jenkins, W. R. (1964). A rapid centrifugal flotation technique for separating nematodes from soil. Plant Disease Report, 48, 692.

    Google Scholar 

  • Jing, H., Li, J., Yan, B., Wei, F., Wang, G., & Liu, G. (2021). The effects of nitrogen addition on soil organic carbon decomposition and microbial C-degradation functional genes abundance in a Pinus tabulaeformis forest. For Ecol Manag. https://doi.org/10.1016/j.foreco.2021.119098

    Article  Google Scholar 

  • Kacar, B. (1995). Bitki ve toprağın kimyasal analizleri, III. Toprak Analizleri. AÜ Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı Yayınları No: 3, Ankara, 705 s

  • Kantarci, M. D. (2000). Toprak İlmi. İstanbul Üniversitesi Toprak İlmi ve Ekoloji Anabilim Dalı, İÜ Yayın No. 4261, Orman Fakültesi Yayın No. 462, İstanbul, pp. 420

  • Kaptanoğlu, A. S., & Namlı, A. (2019). Orman yangınının ve yangın sonrası boşaltma kesimlerinin toprak özelliklerine etkisi. Ormancılık Araştırma Dergisi, 6(1), 29–46.

    Article  Google Scholar 

  • Kara, Ö., & Bolat, İ. (2009). Short-term effects of wildfire on microbial biomass and abundance in black pine plantation soils in Turkey. Ecological Indicators, 9, 1151–1155.

    Article  CAS  Google Scholar 

  • Khanam, D., Mridha, M. A. U., Solaiman, A. R. M., & Hossain, T. (2006). Effect of edaphic factors on root colonization and spore population of arbuscular mycorrhizal fungi. Bulletin of the Institute of Tropical Agriculture, 29(1), 97–104.

    Google Scholar 

  • Kim, J., Huebner, C. D., & Park, Y. L. (2021). Plant species composition and interactions within communities invaded by Persicaria perfoliata (Polygonaceae). Northeast Naturalist, 28, 340–356.

    Article  Google Scholar 

  • Kjøller, R., & Rosendahl, S. (2001). Molecular diversity of glomalean (arbuscular mycorrhizal) fungi determined as distinct Glomus specific DNA sequences from roots of field grown peas fungi. Mycological Research, 105(9), 1027–1032.

    Article  Google Scholar 

  • Kohmann, M. M., Silveira, M. L., da Silva Cardoso, A., & Bracho, R. (2023). Short-term impacts of prescribed fire on C, N, and P dynamics in a subtropical rangeland. Plant and Soil, 490(1), 175–187.

    Article  CAS  Google Scholar 

  • Korkmaz, A. A. (2005). Farklı konukçu bitki ve yetiştirme ortamlarının mikoriza üretimi ve kalitesi üzerine etkileri. “Yüksek Lisans” Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Toprak Ana Bilim Dalı, 73, Adana

  • Kuçuk, M. (2006). Genç Karaçam Meşcerelerinde Yangının Toprak Solunumu, Kök Kütlesi Ve Toprağın Fiziksel Ve Kimyasal Özellikleri Üzerine Etkileri. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Orman Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, 61s

  • Kula, B. (2018). Karaçam Meşcerelerindeki Örtü Ve Tepe Yangınlarının Toprak Özellikleri Üzerine Etkisi. Yüksek Lisans Tezi, Kastamonu Üniversitesi, FBE, Orman Mühendisliği ABD, 55s

  • Kumar, M., Sheikh, M. A., Bhat, J. A., & Bussmann, R. W. (2013). Effect of fire on soil nutrients and under storey vegetation in Chir pine forest in Garhwal Himalaya, India. Acta Ecologica Sinica, 33(1), 59–63.

    Article  Google Scholar 

  • Laurindo, L. K., Souza, T. A. F., da Silva, L. J. R., Nascimento, G. S., & Cruz, S. P. (2022). Pinus taeda L changes arbuscular mycorrhizal fungi communities in a Brazilian subtropical ecosystem. Symbiosis, 87, 269–279. https://doi.org/10.1007/s13199-022-00875-8

    Article  CAS  Google Scholar 

  • Leopold, H. J. (1990). Beimfung von Klee mit VA – Mykorrhiza und rhizobium zur ertags und qualittssteigerung. Germany: Giessen University.

    Google Scholar 

  • Li, J., Pei, J., Liu, J., Wu, J., Li, B., Fang, C., & Nie, M. (2021). Spatiotemporal variability of fire effects on soil carbon and nitrogen: A global meta-analysis. Global Change Biology, 27(17), 4196–4206.

    Article  CAS  Google Scholar 

  • Linderman, R. G., & Davis, A. E. (2004). Varied response of marigold (Tagetes spp.) genotypes to inoculation with different arbuscular mycorrhizal fungi. Scientia Horticulturae, 99, 67–78.

    Article  Google Scholar 

  • Lombao, A., Barreiro, A., Fontúrbel, M. T., Martín, A., Carballas, T., & Díaz-Raviña, M. (2021). Effect of repeated soil heating at different temperatures on microbial activity in two burned soils. Science of the Total Environment, 799, 149440

  • Lone, R., Mushtaq, G., Hassan, N., Malla, N. A., Rohella, G. K., Khan, S. (2024). Role of phenolics in establishing mycorrhizal association in plants for management of biotic stress. In Plant Phenolics in Biotic Stress Management (pp. 35–74). Singapore: Springer Nature Singapore

  • Longo, S., Nouhra, E., Goto, B. T., Berbara, R. L., & Urcelay, C. (2014). Effects of fire on arbuscular mycorrhizal fungi in the Mountain Chaco Forest. Forest Ecology and Management, 315, 86–94.

    Article  Google Scholar 

  • Lucena, E. O., Souza, T. A. F., Araújo, J. S., Andrade, L. A., Santos, D., & Podestá, G. S. (2018). Occurrence and distribution of Gigaspora under Cryptostegia madagascariensis Bojer Ex Decne in Brazilian tropical seasonal dry forest. Revista Agropecuária Técnica, 39, 221–227.

    Article  Google Scholar 

  • Lucena, E. O., Souza, T., da Silva, S. I. A., Kormann, S., da Silva, L. J. R., Laurindo, L. K., Forstall-Sosa, K. S., & de Andrade, L. A. (2021). Soil biota community composition as affected by Cryptostegia madagascariensis invasion in a tropical Cambisol from North-eastern Brazil. Tropical Ecology, 62(4), 662–669.

    Article  Google Scholar 

  • Lyu, Y., Tang, H., Li, H., Zhang, F., Rengel, Z., Whalley, W. R., & Shen, J. (2016). Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply. Frontiers in Plant Science, 7, 1939.

    Article  Google Scholar 

  • Ma, X., Li, X., & Ludewig, U. (2021). Arbuscular mycorrhizal colonization outcompetes root hairs in maize under low phosphorus availability. Annals of Botany, 127(1), 155–166.

    Article  CAS  Google Scholar 

  • Maryani, S., Novriadhy, D. (2022). The potency of Coffea liberica to remediate peat soil after fires in the musi-belida peat hydrological unity, Indonesia. IOP Conf Ser Earth Environ Sci, 995(1), 012047

  • Mathur, N., Singh, J., Bohra, S., & Vyas, A. (2007). arbuscular mycorrhizal status of medicinal halophytes. International Journal of Soil Science, 2(2), 119–127.

    Article  Google Scholar 

  • Medve, R. J. (1985). The effect of fire on the root hairs and mycorrhizae of Liatris spicata. Ohio Journal Science, 85, 151–154.

    Google Scholar 

  • Mickovsky, M. (1967). Effects of burnt straw on the microflora of soil. Annu. Fac. Agric. Univ. Skopje, 20, 55–68.

    Google Scholar 

  • Mirzaei, J., Heydari, M., Omidipour, R., Jafarian, N., & Carcaillet, C. (2023). rease in soil functionalities and herbs’ diversity, but not that of arbuscular mycorrhizal fungi, linked to short fire interval in semi-arid oak forest ecosystem, west Iran. Plants, 12(5), 1112.

    Article  CAS  Google Scholar 

  • Neary, D. G., Klopatek, C. C., DeBano, L. F., & Ffolliott, P. F. (1999). Fire effects on belowground sustainability: A review and synthesis. Forest Ecology and Management, 122(1999), 51–71.

    Article  Google Scholar 

  • Nelson, A. R., Narrowe, A. B., Rhoades, C. C., Fegel, T. S., Daly, R. A., Roth, H. K. ,…, Wilkins, M. J. (2022). Wildfire-dependent changes in soil microbiome diversity and function. Nature Microbiology, 7(9), 1419–1430

  • Neyişçi, T. (1986). Antalya Bölgesi Kızılçam Alanlarında Kontrollü Yangınların Toprak Besin Maddesi Üzerine Yaptığı Etkiler ve Bu Etkiler ile Kızılçam Gençliğinin Gelmesi ve Gelişmesi Arasındaki İlişkiler, Doktora Tezi, İstanbul Üniversitesi, Toprak İlmi ve Ekoloji Anabilim Dalı, 128s

  • Olsen, S. R., Cole, C. V., Watanabe, F. S., Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Department of Agriculture Circular No. 939

  • Owen, S. M., Patterson, A. M., Gehring, C. A., Sieg, C. H., Baggett, L. S., & Fulé, P. Z. (2019). Large, high-severity burn patches limit fungal recovery 13 years after wildfire in a ponderosa pine forest. Soil Biology and Biochemistry, 139, 107616.

    Article  CAS  Google Scholar 

  • Palta, Ş, Genç, L., & A., Öztürk, H. (2018). Determination of arbuscular mycorrhizal fungi at different altitudinal gradients. Fresenius Environmental Bulletin, 27(10), 7045–7053.

    CAS  Google Scholar 

  • Palta, S, Kara, O., Demir, S., Sengönül, K., & Sensoy, H. (2013). Effects of soil properties and botanic composition on arbuscular mycorrhizal fungus (AMF) from Gramineae family plants. Orman Fakültesi Dergisi, 15(1–2), 31–22.

    Google Scholar 

  • Pantami, S. A., Novcir, N., & Babaji, G. A. (2010). Effect of burning on soil physical properties in the dry sub-humid savanna zone of Nigeria. Bayero University, Kano, Nigeria.

    Google Scholar 

  • Pattinson, G. S., Hammill, K. A., Sutton, B. G., & McGee, P. A. (1999). Simulated fire reduces the density of arbuscular mycorrhizal fungi at the soil surface. Mycological Research, 103(4), 491–496.

    Article  Google Scholar 

  • Pellegrini, A. F., Hobbie, S. E., Reich, P. B., Jumpponen, A., Brookshire, E. J., Caprio, A. C., Coetsee, C., & Jackson, R. B. (2020). Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecological Monographs, 90(4), e01409.

    Article  Google Scholar 

  • Pereira, P., Cerda, A., Ubeda, X., Mataix-Solera, J., Martin, D., Jordan, A., & Burguet, M. (2012). Effects of fire on ash thickness in a Lithuanian grassland and short-term spatio-temporal changes. Solid Earth Discussions, 4, 1545–1584.

    Google Scholar 

  • Pereira, P., Francos, M., Brevik, E. C., Ubeda, X., & Bogunovic, I. (2018). Post-fire soil management. Current Opinion in Environmental Science & Health, 5, 26–32.

    Article  Google Scholar 

  • Phillips, J. M., & Hayman, D. S. (1970). Improved procedure for cleaning roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158–161.

    Article  Google Scholar 

  • Pielou, E. C. (1975). Ecology Diversity. John Wiley and Sons Inc.

    Google Scholar 

  • Pietikainen, J., & Fritze, H. (1995). Clear-cutting and prescribed burning in coniferous forest: Comparison of effects on soil fungal and total microbial biomass, respiration activity and nitrification. Soil Biology & Biochemistry, 27, 101–109.

    Article  CAS  Google Scholar 

  • Prieto-Fernandez, A., Acea, M. J., & Carballas, T. (1998). Soil microbial and extractable C and N after wildfire. Biology and Fertility of Soils, 27(2), 132–142.

    Article  CAS  Google Scholar 

  • Rashid, A., Ahmed, T., Ayub, N., & Khan, A. G. (1997). Effect of forest fire on number, viability and post-fire reestablishment of arbuscular mycorrhizae. Mycorrhiza, 7(4), 217–220.

    Article  Google Scholar 

  • Rhoades, J. D. (1982). Soluble Salts. In Page, A.L. (ed.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 149–157), SSSA Book series, No: 9, Madison

  • Rowell, D. L. (1994). Soil science: methods and applications. Longman Scientific and Technical, Singapore

  • Saito, M. (2000). Symbiotic exchange of nutrients in arbuscular mycorrhizas: Transport and transfer of phosphorus. In Kapulnik Y ve Douds D D Jr (eds), Arbuscular Mycorrhizas: Physiology and Function (pp. 85–106), Kluwer Academic Publishers

  • Santorufo, L., Memoli, V., Panico, S. C., Santini, G., Barile, R., Di Natale, G., Trifuoggi, M., De Marco, A., Maisto, G. (2021). Early post-fire changes in properties of Andosols within a Mediterranean area. Geoderma, 394, 115016

  • Scharenbroch, B. C., Nix, B., Jacobs, K. A., & Bowles, M. L. (2012). “Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern”, USA oak (Quercus) forest. Geoderma, 183, 80–91.

    Article  Google Scholar 

  • Schenck, N. C., & Perez, Y. (1990). Manual for the identification of VA mycorrhizal fungi (3rd ed.). Synergistic Publications.

    Google Scholar 

  • Sensoy, S., Demir, S., Türkmen, Ö., Erdinç, Ç., & Savur, O. B. (2007). Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi. Scientia Horticulturae, 113, 92–95.

    Article  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Illinois University Press. https://doi.org/10.1145/584091.584093

  • Sieverding, E. (1991). Vesicular-arbuscular mycorrhizae management in tropical agrosystems (p. 372p). Federal Rebpublic of Germany.

    Google Scholar 

  • Silva, S. I. A., Souza, T. A. F., Lucena, E. O., da Silva, L. J. R., Laurindo, L. K., Nascimento, G. S., & Santos, D. (2021). High phosphorus availability promotes the diversity of arbuscular mycorrhizal spores’ community in different tropical crop systems. Biologia, 76, 3211–3220. https://doi.org/10.1007/s11756-021-00874-y

    Article  CAS  Google Scholar 

  • Sivakumar, N. (2013). Effect of edaphic factors and seasonal variation on spore density and root colonization of arbuscular mycorrhizal fungi in sugarcane fields. Annals of Microbiology, 63(1), 151–160.

    Article  Google Scholar 

  • Souza, T. (2015). Handbook of arbuscular mycorrhizal fungi. Springer.

    Book  Google Scholar 

  • Souza, T. (2022). Soil biology in tropical ecosystems. Springer.

    Book  Google Scholar 

  • Souza, T., Barros, I. C., da Silva, L. J. R., Laurindo, L. K., Nascimento, G. S., Lucena, E. O., Martins, M., & Santos, V. B. (2022). Soil microbiota community assembling in native plant species from Brazil’s Legal Amazon. Symbiosis, 86, 93–109. https://doi.org/10.1007/s13199-021-00828-7

    Article  CAS  Google Scholar 

  • Souza, T. A. F., da Silva, L. J. R., & Nascimento, G. S. (2023). Amazonian deforestation and its influence on soil biotic factors and abiotic properties. In press.

    Book  Google Scholar 

  • Souza, T. A. F., & Freitas, H. (2017). Arbuscular mycorrhizal fungal community assembly in the Brazilian tropical seasonal dry forest. Ecological Processes, 6, 2. https://doi.org/10.1186/s13717-017-0072-x

    Article  Google Scholar 

  • Souza, T. A. F., Rodriguez-Echeverría, S., Andrade, L. A., & Freitas, H. (2016). Arbuscular mycorrhizal fungi in Mimosa tenuiflora (Willd.) Poir from Brazilian semi-arid. Brazilian Journal of Microbiology, 47, 359–366. https://doi.org/10.1016/j.bjm.2016.01.023

    Article  CAS  Google Scholar 

  • Stürmer, S. L., Heinz, K. G. H., Marascalchi, M. N., Giongo, A., Siqueira, J. O. (2022). Wildfire does not affect spore abundance, species richness, and inoculum potential of arbuscular mycorrhizal fungi (Glomeromycota) in ferruginous Canga ecosystems. Acta Botanica Brasilica, 36, e2021abb0218

  • Taudière, A., Richard, F., & Carcaillet, C. (2017). Review on fire effects on ectomycorrhizal symbiosis, an unachieved work for a scalding topic. Forest Ecology and Management, 391, 446–457.

    Article  Google Scholar 

  • Tavşanoğlu, Ç. (2008). Marmaris Çevresi Pinus brutia (Kızılçam) Ormanlarında Yangın Sonrası Vejetasyon Dinamikleri, Doktora Tezi, Hacettepe Üniversitesi, FBE, Biyoloji ABD, 107 s

  • Tavşanoğlu, Ç. (2017). Yangın Coğrafyası: Vejetasyon yangınlarının ve ekolojik sonuçlarının alansal dağılımı. Kebikeç: İnsan Bilimleri İçin Kaynak Araştırmaları Dergisi (43), 289–300

  • Truong, T. T. A., Andrew, M. E., Hardy, G. E. S. J., Pham, T. Q., Nguyen, Q. H., & Dell, B. (2021). Impact of a native invasive weed (Microstegium ciliatum) on regeneration of a tropical forest. Plant Ecology, 222, 173–191. https://doi.org/10.1007/s11258-020-01097-y

    Article  Google Scholar 

  • Tuce, S. (2019). Yangının Farklı Arazi Kullanımlarında Bazı Toprak Özelliklerine Etkileri: “Düzce Hasanlar Köyü Orman Yangını Örneği”. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Orman Mühendisliği ABD, 48 s

  • Ubeda, X., Lorca, M., Outeiro, L. R., Bernia, S., & Castellnou, M. (2005). Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, Nort-east Spain). International Journal of Wildland Fire, 14(4), 379–384.

    Article  Google Scholar 

  • Van Tuinen, D., Jacquot, E., Zhao, B., Gollotte, A., & Gianinazzi-Pearson, V. (1998). Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Molecular Ecology, 7(7), 879–887.

    Article  Google Scholar 

  • Vidal-Riveros, C., Souza-Alonso, P., Bravo, S., Laino, R., & Bieng, M. A. N. (2023). A review of wildfires effects across the Gran Chaco region. Forest Ecology and Management, 549, 121432

  • Walkley, A., & Black, A. I. (1934). An examination of the degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Wen, Z., Li, H., Shen, Q., Tang, X., Xiong, C., Li, H., Pang, J., Ryan, M. H., Lambers, H., & Shen, J. (2019). Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytologist, 223(2), 882–895.

    Article  CAS  Google Scholar 

  • Xiang, X., Gibbons, S. M., Yang, J., Kong, J., Sun, R., & Chu, H. (2015). Arbuscular mycorrhizal fungal communities show low resistance and high resilience to wildfire disturbance. Plant and Soil, 397(1–2), 347–356.

    Article  CAS  Google Scholar 

  • Yılmaz, A. E. (2016). Bir Sarıçam+Karaçam Karışık Meşceresinde Örtü Yangınını Takiben Toprak Özelliklerindeki Değişimin Belirlenmesi: Ilgaz Hızardere Orman İşletme Şefliği Örneği. Yüksek Lisans Tezi, Çankırı Karatekin Üniversitesi, FBE, Orman Mühendisliği ABD, 61s

  • Zhang, Y., Gui, L. D., & Liu, R. J. (2004). Survey of arbuscular mycorrhizal fungi in deforested and natural forest land in the subtropical region of Dujiangyan, southwest China. Plant Soil, 261, 257–263. https://doi.org/10.1023/B:PLSO.0000035572.15098.f6

Download references