integrated-assessment-of-groundwater-pollution-vulnerability-in-goulmima:-a-comparative-analysis-of-drastic-and-…-–-springer

Integrated assessment of groundwater pollution vulnerability in Goulmima: a comparative analysis of DRASTIC and … – Springer

Abstract

This study presents a comprehensive groundwater vulnerability assessment conducted in the Goulmima palm grove of southeastern Morocco, a region facing potential risks of groundwater pollution due to natural and anthropogenic factors. In this study, the DRASTIC and GOD methods were used to identify areas highly, moderately, and weakly vulnerable to pollution. The aquifer’s characteristics, geological formations, and climatic conditions are thoroughly analyzed in this arid oasis environment. The DRASTIC method evaluates parameters such as soil media, topography, hydraulic conductivity, depth to the water table, aquifer media, impact of the vadose zone, and net recharge. Meanwhile, the GOD method focuses on aquifer vulnerability to vertical percolation of pollutants. DRASTIC reveals that 72.23% of the area has a moderate vulnerability, with lesser extents of low (10.88%) and high (16.89%) vulnerabilities. GOD highlights 44% of the area as highly vulnerable, with medium and low vulnerabilities at 40% and 16%, respectively, showcasing different risk assessments between methods. Validation through electrical conductivity and nitrate data confirms a correlation between the vulnerability maps produced by the DRASTIC and GOD methods and the observed contamination levels. The findings emphasize the need for sustainable water resource management strategies, inclusive land use planning, and collaborative efforts among stakeholders to address identified constraints and ensure responsible development in the Goulmima aquifer.

Access this article

Log in via an institution

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data availability

All data generated during the manuscript analysis are included in the article. Further datasets are available from the corresponding author upon request.

References

  • ABH-GZR (2021) Étude d’actualisation du plan directeur d’aménagement intégré des ressources en eau des bassins hydrauliques du Guir-Ziz-Rheris et Maider. Errachidia., 249–253.

  • Ait Lahssaine I, Kabiri L, Messaoudi B, Essafraoui B, El Ouali M, Ouali L, Essahlaoui A (2024) Mapping favorable groundwater potential recharge areas using a gis-based analytical hierarchical process: a case study of Ferkla Oasis. Moroc Ecol Eng Environ Technol 25(3):311–325. https://doi.org/10.12912/27197050/182842

    Article  Google Scholar 

  • Ait Said B, Mili EM, El Faleh EM, Mehdaoui R, Mahboub A, Hamid FE, El Fakir R (2023) Hydrochemical evolution and groundwater quality assessment of the Tinejdad-Touroug quaternary aquifer, South-East Morocco. Front Ecol Evol 11:1201748

    Article  Google Scholar 

  • Aller L, Thornhill J (1987) DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. Robert S Kerr Environmental Research Laboratory Office of Research

    Google Scholar 

  • Asabere SB, Acheampong RA, Ashiagbor G, Beckers SC, Keck M, Erasmi S, Schanze J, Sauer D (2020) Urbanization, land use transformation and spatio-environmental impacts: analyses of trends and implications in major metropolitan regions of Ghana. Land Use Policy 96:104707. https://doi.org/10.1016/j.landusepol.2020.104707

    Article  Google Scholar 

  • Asfaw E, Suryabhagavan KV, Argaw M (2018) Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia. J Saudi Soc Agric Sci 17(3):250–258. https://doi.org/10.1016/j.jssas.2016.05.003

    Article  Google Scholar 

  • Assouline S (2013) Infiltration into soils: Conceptual approaches and solutions. Water Resour Res 49(4):1755–1772. https://doi.org/10.1002/wrcr.20155

    Article  Google Scholar 

  • Azzi Y, Essahlaoui A, EL HMAIDI A, EL OUALI A, MUHAMMETOGLU A, MUHAMMETOGLU H (2016) Vulnerability assessment to pollution of groundwater of the Moroccan Atlas Causse (region El Hajeb-Ifrane) by several methods using gis. Am J Innov Res Appl Sci, ISSN, 2429–5396.

  • Baki S, Hilali M, Kacimi I, Mahboub A, Kassou N, Nouyiti N (2016) Etude de la vulnérabilité intrinsèque à la pollution et qualité des eaux de surface dans les zones arides: Cas du bassin versant de l’oued Rhéris (Sud-Est du Maroc). J Mater Environ Sci 7(11):3961–3972

    CAS  Google Scholar 

  • Banerjee A, Creedon L, Jones N, Gill L, Gharbia S (2023) Dynamic groundwater contamination vulnerability assessment techniques: a systematic review. Hydrology 10:182. https://doi.org/10.3390/hydrology10090182

    Article  Google Scholar 

  • Bera A, Mukhopadhyay BP, Das S (2022) Groundwater vulnerability and contamination risk mapping of semi-arid Totko river basin, India using GIS-based DRASTIC model and AHP techniques. Chemosphere 307:135831. https://doi.org/10.1016/j.chemosphere.2022.135831

    Article  CAS  Google Scholar 

  • Bouhlassa S, Alechcheikh C, Kabiri L (2008) Origine de la minéralisation et de la détérioration de la qualité des eaux souterraines de la nappe phréatique du Quaternaire du bassin-versant de Rheris (Errachidia, Maroc). Sci Et Changements Planétaires/sécheresse 19:67–75. https://doi.org/10.1684/sec.2008.0116

    Article  Google Scholar 

  • Bouzekraoui M, Saadi M, Essalhi M, Karaoui B, Hilali M, Jayadi S, Bahaj T (2023) Extensional tectonics, structural architecture modeling and geodynamic evolution in the Cretaceous Tinghir-Errachidia-Boudenib basin (Pre-African Trough, Morocco). J Afr Earth Sc 203:104957. https://doi.org/10.1016/j.jafrearsci.2023.104957

    Article  Google Scholar 

  • Bradford JB, Schlaepfer DR, Lauenroth WK, Palmquist KA (2020) Robust ecological drought projections for drylands in the 21st century. Glob Change Biol 26(7):3906–3919. https://doi.org/10.1111/gcb.15075

    Article  Google Scholar 

  • Burri NM, Weatherl R, Moeck C, Schirmer M (2019) A review of threats to groundwater quality in the anthropocene. Sci Total Environ 684:136–154. https://doi.org/10.1016/j.scitotenv.2019.05.236

    Article  CAS  Google Scholar 

  • Duarte L, Espinha Marques J, Teodoro AC (2019) An open source GIS-based application for the assessment of groundwater vulnerability to pollution. Environments 6:86. https://doi.org/10.3390/environments6070086

    Article  Google Scholar 

  • Ekanem A, Ikpe E, George N, Thomas J (2022) Integrating geoelectrical and geological techniques in GIS-based DRASTIC model of groundwater vulnerability potential in the raffia city of Ikot Ekpene and its environs, southern Nigeria. Int J Energy Water Resour. https://doi.org/10.1007/s42108-022-00202-3

    Article  Google Scholar 

  • Essahlaoui A (2000) Contribution à la reconnaissance des formations aquifères dans le Bassin de Meknès-Fès (Maroc), Prospection géoélectrique, étude hydrogéologique et inventaire des ressources en eau. Applied sciences thesis, School Mohammadia of Engineers, Rabat, Maroc

  • Essaouini H (2015) Application de la «linear shallow water theory» aux problèmes d’oscillations d’un liquide pesant dans un container, en présence de tension superficielles. In CFM 2015–22ème Congrès Français de Mécanique. AFM, Maison de la Mécanique, 39/41 rue Louis Blanc-92400 Courbevoie

  • Guettaia S, Hacini M, Boudjema A, Zahrouna A (2017) Vulnerability assessment of an aquifer in an arid environment and comparison of the applied methods: case of the mio-plio-quaternary aquifer. Energy Procedia 119:482–489. https://doi.org/10.1016/j.egypro.2017.07.057

    Article  Google Scholar 

  • Hasiniaina F, Zhou J, Guoyi L (2010) Regional assessment of groundwater vulnerability in Tamtsag basin, Mongolia using drastic model. J Am Sci 6(11):65–78

    Google Scholar 

  • Hosseini M, Saremi A (2018) Assessment and estimating groundwater vulnerability to pollution using a modified DRASTIC and GODS models (case study: Malayer Plain of Iran). Civil Engineering Journal 4:433–442

    Article  Google Scholar 

  • Jinting H, Ge S, Fang P, Jiawei W, Zongze L, Fang Z, Fangqiang S (2022) Migration and transformation of “three nitrogen” pollutants in multilayer unsaturated zone: an in situ experiment. Ecol Environ 31:1208

    Google Scholar 

  • Liang X, Chen L, Nguyen D, Zhou Z, Gu X, Yang M, Wang J, Jiang S (2019) Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Phys Med Biol 64:125002. https://doi.org/10.1088/1361-6560/ab22f9

    Article  CAS  Google Scholar 

  • Mei X, Wong MH, Yang Y, Dong H, Qiu R, Ye Z (2012) The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere. Environ Pollut 165:109–117. https://doi.org/10.1016/j.envpol.2012.02.018

    Article  CAS  Google Scholar 

  • Messaoudi B, Kabiri L, Ait Lahssaine I, Essafraoui B, Ouali L, Ait Said B, El Amraoui M (2024) Groundwater resources management using Hydrodynamic modelling in southeastern Moroccan oases: case of Ferkla Oasis. Environ Earth Sci 83(5):143. https://doi.org/10.1007/s12665-024-11454-z

    Article  Google Scholar 

  • Mfonka Z, Ngoupayou JN, Ndjigui PD, Kpoumie A, Zammouri M, Ngouh A, Mouncherou O, Rakotondrabe F, Rasolomanana E (2018) A GIS-based DRASTIC and GOD models for assessing alterites aquifer of three experimental watersheds in Foumban (Western-Cameroon). Groundw Sustain Dev 7:250–264. https://doi.org/10.1016/j.gsd.2018.06.006

    Article  Google Scholar 

  • Misi A, Gumindoga W, Hoko Z (2018) An assessment of groundwater potential and vulnerability in the Upper Manyame Sub-Catchment of Zimbabwe. Phys Chem Earth Parts a/b/c 105:72–83. https://doi.org/10.1016/j.pce.2018.03.003

    Article  Google Scholar 

  • Murat V, Paradis D, Savard M, Nastev M, Bourque E, Hamel A, Lefebvre R, Martel R (2003) Vulnérabilité à la nappe des aquifères fracturés du sud-ouest du Québec:: évaluation par les méthodes DRASTIC et GOD. Ressources naturelles Canada, Commission géologique du Canada.

  • Murat V (2000) Étude comparative des méthodes d’évaluation de la vulnérabilité intrinsèque des aquifères à la pollution: application aux aquifères granulaires du piémont laurentien. Institut National de la Recherche Scientifique (Canada).

  • ORMVAT-TF (2021) Monographie de la zone d’action de la subdivision de Goulmima. 10. Office régional de mise en valeur agricole du Tafilalet.

  • Ouali L, Kabiri L, Essafraoui B, El Amaraoui M, El Ouali M, Kassou A, Minoia P (2023) Spatial modeling of water erosion vulnerability and mapping potential sites of control measures using GIS and MCDM: a case study from the drylands of southeastern Morocco. Model Earth Syst Environ 9(3):3473–3482. https://doi.org/10.1007/s40808-023-01720-7

    Article  Google Scholar 

  • Pacheco F, Pires L, Santos R, Fernandes LS (2015) Factor weighting in DRASTIC modeling. Sci Total Environ 505:474–486. https://doi.org/10.1016/j.scitotenv.2014.09.092

    Article  CAS  Google Scholar 

  • Romman ZA, Al Smadi B, Weshah A (2024) A statistical analysis of the selectiveness of groundwater related policies in mitigating over-extraction in Arid regions: Challenges and impacts. Groundw Sustain Dev. https://doi.org/10.1016/j.gsd.2024.101203

    Article  Google Scholar 

  • Saatsaz M, Sulaiman WNA, Eslamian S, Mohammadi K (2011) GIS DRASTIC model for groundwater vulnerability estimation of Astaneh-Kouchesfahan Plain, Northern Iran. Int J Water 6:1–14. https://doi.org/10.1504/IJW.2011.043313

    Article  Google Scholar 

  • Saidi S, Bouri S, Ben Dhia H (2010) Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environ Earth Sci 59:1579–1588. https://doi.org/10.1007/s12665-009-0143-0

    Article  CAS  Google Scholar 

  • Saravanan S, Pitchaikani S, Thambiraja M, Sathiyamurthi S, Sivakumar V, Velusamy S, Shanmugamoorthy M (2023) Comparative assessment of groundwater vulnerability using GIS-based DRASTIC and DRASTIC-AHP for Thoothukudi District, Tamil Nadu India. Environ Monit Assess 195:57. https://doi.org/10.1007/s10661-022-10601-y

    Article  CAS  Google Scholar 

  • Sayed MA, Kamal AM, Hossain A, Hasan M, Khan MR, Ahmed KMU, Knappett PS (2023) Groundwater vulnerability assessment to pollution using GIS-based DRASTIC and GOD methods in Araihazar upazila of Narayanganj district. Bangladesh Groundw Sustain Dev 23:100984. https://doi.org/10.1016/j.gsd.2023.100984

    Article  Google Scholar 

  • Selvam S, Venkatramanan S, Singaraja C (2015) A GIS-based assessment of water quality pollution indices for heavy metal contamination in Tuticorin Corporation, Tamilnadu, India. Arab J Geosci 8:10611–10623. https://doi.org/10.1007/s12517-015-1968-3

    Article  CAS  Google Scholar 

  • Su L, Cai H, Kolandhasamy P, Wu C, Rochman CM, Shi H (2018) Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ Pollut 234:347–355. https://doi.org/10.1016/j.envpol.2017.11.075

    Article  CAS  Google Scholar 

  • Tomer T, Katyal D, Joshi V (2019) Sensitivity analysis of groundwater vulnerability using DRASTIC method: a case study of National Capital Territory, Delhi. India Groundw Sustain Dev 9:100271. https://doi.org/10.1016/j.gsd.2019.100271

    Article  Google Scholar 

  • Tramblay Y, Koutroulis A, Samaniego L, Vicente-Serrano SM, Volaire F, Boone A, Le Page M, Llasat MC, Albergel C, Burak S (2020) Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth Sci Rev 210:103348. https://doi.org/10.1016/j.earscirev.2020.103348

    Article  Google Scholar 

  • Wei C, Dong X, Ma Y, Zhao W, Yu D, Tayyab M, Bo H (2022) Impacts of land use types, soil properties, and topography on baseflow recharge and prediction in an agricultural watershed. Land 12:109. https://doi.org/10.3390/land12010109

    Article  Google Scholar 

  • Zhang K, Kimball JS, Running SW (2016) A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip Rev Water 3:834–853. https://doi.org/10.1002/wat2.1168

    Article  Google Scholar 

Download references

Funding

The authors have no financial or proprietary interests in any material discussed in this article.

Author information

Authors and Affiliations

  1. Geo-Resource Geo-Environment Geological and Oasis Heritage Research Team, Faculty of Sciences and Techniques of Errachidia, Moulay Ismail University, Errachidia, Morocco

    Ismail Ait Lahssaine, Lahcen Kabiri, Badre Messaoudi, Badre Essafraoui, Lamya Ouali & Abdelhakim Kadiri

  2. Center of Applied Research, Karlsruhe University of Applied Sciences, 76133, Kralshrue, Germany

    Ismail Ait Lahssaine

  3. Sciences Faculty of Meknes, Moulay Ismail University, Meknès, Morocco

    Youssef Saadi

  4. Geoengineering and Environment Laboratory, Research Group, Water Sciences and Environment Engineering, Sciences Faculty of Meknes, Moulay Ismail University, Meknes, Morocco

    Ali Essahlaoui

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Ismail Ait Lahssaine, Youssef Saadi, and Badre Messaoudi. Ismail Ait Lahssaine wrote the first draft of the manuscript. Lahcen Kabiri and Badre Essafraoui have made a significant contribution to the idea of the article, the acquisition and interpretation of data. The authors Ali Essahlaoui, Lamya Ouali, and Abdelhakim Kadiri commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ismail Ait Lahssaine.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Consent for publication

The authors unanimously agreed to publish this article.

Additional information

Responsible Editor: Abdelilah EL ABBASSI.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait Lahssaine, I., Kabiri, L., Messaoudi, B. et al. Integrated assessment of groundwater pollution vulnerability in Goulmima: a comparative analysis of DRASTIC and GOD methods. Euro-Mediterr J Environ Integr (2024). https://doi.org/10.1007/s41207-024-00575-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41207-024-00575-3

Keywords