introducing-a-parametric-function-on-relaxation-times-in-magnetic-resonance-imaging-|-multimedia-tools-and-applications-–-springer

Introducing a parametric function on relaxation times in magnetic resonance imaging | Multimedia Tools and Applications – Springer

References

  1. Araki T, Inouye T, Suzuki H, Machida T, Lio M (1984) Magnetic resonance imaging of brain tumors: measurement of T1. Radiology 150:95–98

    Article  Google Scholar 

  2. Rinck PA, Meindl S, Higer HP, Bieler EU, Pfannenstiel P (1985) Brain tumors: detection and typing by use of CPMG sequences and in vivo T2 measurements. Radiology 157:103–106

    Article  Google Scholar 

  3. Ashoor M, Khorshidi A (2016) Estimation of the number of compartments associated with the apparent diffusion coefficient in MRI: The theoretical and experimental investigation. Am J Roentgenol 206:455–462

    Article  Google Scholar 

  4. Van Dijke CF, Brasch RC, Roberts TPL, Weidner N, Mathur A, Shames DM, Mann JS, Demsar F, Lang P, Schwickert HC (1996) Mammary carcinoma model: correlation of macromolecular contrast-enhanced MR imaging characterizations of tumor microvasculature and histologic capillary density. Radiology 198:813–818

    Article  Google Scholar 

  5. Jensen JH, Chandra R (2000) MR imaging of microvasculature. Magn Reson Med 44:224–230

    Google Scholar 

  6. Van Rijswijk CSP, Kunz P, Hogendoorn PCW, Taminiau AHM, Doornbos J, Bloem JL (2002) Diffusion-weighted MRI in the characterization of soft tissue tumors. J Magn Reson Imaging 15:302–307

    Article  Google Scholar 

  7. Tropres I, Grimault S, Vaeth A, Grillon E, Julien C, Payen JF, Lamalle L, Decorps M (2001) Vessel size imaging. Magn Reson Med 45:397–408

    Google Scholar 

  8. Lin SZ, Sposito N, Pettersen S, Rybacki L, McKenna E, Pettigrew K, Fenstermacher J (1990) Cerebral capillary bed structure of normotensive and chronically hypertensive rats. Microvasc Res 40:341–357

    Article  Google Scholar 

  9. Pathak AP, Schmainda KM, Ward BD, Linderman JR, Rebro KJ, Greene AS (2001) MR-Derived cerebral blood volume maps: Issues regarding histological validation and assessment of tumor angiogenesis. Magn Reson Med 46:735–747

    Article  Google Scholar 

  10. Dennie J, Mandeville JB, Boxerman JL, Packard SD, Rosen BR, Weisskoff RM (1998) NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 40:793–799

    Article  Google Scholar 

  11. Barber PA, Darby DG, Desmond PM, Yang Q, Gerraty RP, Jolley D, Donnan GA, Tress BM, Davis SM (1998) Prediction of stroke outcome with echo planar perfusion- and diffusion-weighted MRI. Neurology 51:418–426

    Article  Google Scholar 

  12. Bauer WR, Hiller KH, Roder F, Rommel E, Ertl G, Haase A (1996) Magnetization exchange in capillaries by microcirculation affects diffusion-controlled spin-relaxation: a model which describes the effect of perfusion on relaxation enhancement intravascular contrast agents. Magn Reson Med 35(1):43–55

  13. Kroenke CD, Ackerman JH, Yablonskiy DA (2004) On the Nature of the NAA Diffusion Attenuated MR Signal in the Central Nervous System. Magn Reson Med 52:1052–1059

    Article  Google Scholar 

  14. Inglis BA, Bossart EL, Buckley DL, Wirthand ED, Mareci TH (2001) Visualization of Neural Tissue Water Compartments Using Biexponential Diffusion Tensor MRI. Magn Reson Med 45:580–587

    Article  Google Scholar 

  15. Sehy JV, Ackerman JH, Neil JJ (2002) Evidence that both fast and slow water ADC components arise from intracellular space. Magn Reson Med 48:765–770

    Article  Google Scholar 

  16. Mulkern RV, Zengingonul HP, Robertson RL, Bogner P, Zou KH, Gudbjartsson H, Guttmann CRG, Holtzman D, Kyriakos W, Jolesz FA, Maier SE (2000) Multi-component Apparent Diffusion Coefficients in Human Brain: Relationship to Spin-Lattice Relaxation. Magn Reson Med 44:292–300

    Google Scholar 

  17. Maier SE, Bogner P, Bajzik G, Mamata H, Mamata Y, Repa I, Jolesz FA, Mulkern RV (2001) Normal brain and brain tumor: multicomponent apparent diffusion coefficient line scan imaging. Radiology 219:842–849

    Article  Google Scholar 

  18. Jiang Q, Chopp M, Zhang ZG, Knight RA, Jacobs M, Windham JP, Peck D, Ewing JR, Welch KMA (1997) The temporal evolution of MRI tissue signatures after transient middle cerebral artery occlusion in rat. J Neurol Sci 145:15–23

    Article  Google Scholar 

  19. Bihan DL, Turner R, Patronas N (1995) Diffusion MR imaging in normal brain and in brain tumors. In: Le Bihan D (ed) Diffusion and perfusion magnetic resonance imaging. Raven, New York, pp 134–140

    Google Scholar 

  20. Luca AD, Leemans A, Bertoldo A, Arrigoni F, Froeling M (2018) A robust deconvolution method to disentangle multiple water pools in diffusion MRI. NMR Biomed 31:e3965

    Article  Google Scholar 

  21. Bihan DL (1995) Diffusion and perfusion magnetic resonance imaging: applications to functional MRI. Raven Press, University of Michigan, chapter 15, pp 270–274

  22. Ashoor M, Jiang Q, Chopp M, Jahed M (2005) Introducing a New Definition Towards Clinical Detection of Microvascular Changes Using Diffusion and Perfusion MRI. Sci Iranica 12:109–115

    Google Scholar 

  23. Jin T, Zhao F, Kim SG (2006) Sources of Functional Apparent Diffusion Coefficient Changes Investigated by Diffusion-Weighted Spin-Echo fMRI. Magn Reson Med 56:1283–1292

    Article  Google Scholar 

  24. Lee SP, Silva AC, Ugurbil K, Kim SG (1999) Diffusion-weighted spin echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal change. Magn Reson Med 42:919–928

    Google Scholar 

  25. Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, Weinstein PR (1990) Early detection of regional cerebral ischemia in cats: comparison of diffusion and T2-weighted MRI and spectroscopy. Magn Reson Med 14:330–346

    Article  Google Scholar 

  26. Ashoor M, Khorshidi A (2022) Point-spread-function enhancement via designing new configuration of collimator in nuclear medicine. Radiat Phys Chem 190:109783

    Article  Google Scholar 

  27. Moslemi V, Ashoor M (2017) Introducing a novel parallel hole collimator: the theoretical and Monte Carlo investigations. IEEE Trans Nucl Sci 64(9):2578–2587

    Article  Google Scholar 

  28. Ashoor M, Khorshidi A, Sarkhosh L (2019) Estimation of microvascular capillary physical parameters using MRI assuming a pseudo liquid drop as model of fluid exchange on the cellular level. Rep Practical Oncol Radiother 24(1):3–11

    Article  Google Scholar 

  29. Ashoor M, Khorshidi A, Pirouzi A, Abdollahi A, Mohsenzadeh M, Barzi SMZ (2021) Estimation of Reynolds number on microvasculature capillary bed using diffusion and perfusion MRI: the theoretical and experimental investigations. Eur Phys J Plus 136:152

    Article  Google Scholar 

  30. Ashoor M, Khorshidi A (2023) Modeling modulation transfer function based on analytical functions in imaging systems. The European Physical Journal Plus 138:249. https://doi.org/10.1140/epjp/s13360-023-03884-8

    Article  Google Scholar 

  31. Bushberg JT, Seibert JA, Leidholdt EM, Boone JM (2011) The essential physics of medical imaging. Lippincott Williams & Wilkins Publisher, Philadelphia

  32. Fung BM, McGaughy TW (1979) Study of spin-lattice and spin-spin relaxation times of H1, H2, and O17 in muscle water. Biophysics J 28:293–304

    Article  Google Scholar 

  33. Goldman M (2001) Advances in Magnetic Resonance Formal Theory of Spin-Lattice Relaxation. J Magn Reson 149:160–187

    Article  Google Scholar 

  34. Liang ZP, Lauterbur PC (2000) Principles of magnetic resonance imaging: a signal processing perspective. Wiley-IEEE Press, New York

  35. Truszkiewicz Adrian, Aebisher David, Bartusik-Aebisher Dorota (2020) Assessment of spin-lattice T1 and spin-spin T2 relaxation time measurements in breast cell cultures at 1.5 Tesla as a potential diagnostic tool in vitro. Med Res J 5(1):23–33

    Google Scholar 

  36. Reiser MF, Semmler W, Hricak H (eds) (2008) Magnetic resonance tomography. Springer Berlin Publisher, Heidelberg

  37. Han SH, An YY, Kang BJ, Kim SH, Lee EJ (2016) Takeaways from pre-contrast T1 and T2 breast magnetic resonance imaging in women with recently diagnosed breast cancer. Iran J Radiol 13(4):e36271

  38. Komiyama M, Yagura H, Baba M, Yasui T, Hakuba A, Nishimura S, Inoue Y (1987) MR imaging: possibility of tissue characterization of brain tumors using T1 and T2 values. AJNR Am J Neuroradiol 8(1):65–70

  39. Sage D, Unser M (2003) Teaching image-processing programming in Java. IEEE Signal Process Mag 20(6):43–52

    Article  Google Scholar 

  40. Truszkiewicz A, Aebisher D, Bartusik-Aebisher D (2020) Assessment of spin-lattice T1 and spin-spin T2 relaxation time measurements in breast cell cultures at 1.5 Tesla as a potential diagnostic tool in vitro. Med Res J 5(1):23–33

  41. Tsai CC, Ng SH, Chen YL, Juan YH, Wang CH, Lin G, Chien CW, Lin YC, Lin YC, Huang YC, Huang PC, Wang JJ (2021) T1 and T2∗ relaxation time in the parcellated myocardium of healthy Taiwanese participants: a single center study. Biomed J 44(6 Suppl 1):S132–S143

  42. Stark DD, Bradley WG (1999) Magnetic resonance imaging. Mosby Publisher, University of Nebraska, Omaha

  43. Mitchell DG, Burk DL, Vinitski S et al (1987) The biophysical basis of tissue contrast in extracranial MR imaging. AJR Am J Roentgenol 149(4):831–7

    Article  Google Scholar 

  44. Wang H, Zhao M, Ackerman JL et al (2017) Saturation-inversion-recovery: A method for T1 measurement. J Magn Reson 274:137–143

    Article  Google Scholar 

  45. Fanea L, Sfrangeu SA (2011) Relaxation times mapping using magnetic resonance imaging. Roman Rep Phys 63(2):456–464

    Google Scholar 

  46. Treier R, Steingoetter A, Goetze O et al (2008) Fast and optimized T1 mapping technique for the noninvasive quantification of gastric secretion. J Magn Reson Imaging 28(1):96–102

    Article  Google Scholar 

  47. Hsu JJ, Glover GH (2006) Rapid MRI method for mapping the longitudinal relaxation time. J Magn Reson 181(1):98–106

    Article  Google Scholar 

  48. Hsu JJ, Zaharchuk G, Glover GH (2009) Rapid methods for concurrent measurement of the RF-pulse flip angle and the longitudinal relaxation time. Magn Reson Med 61(6):1319–1325

    Article  Google Scholar 

  49. Hirasaki GJ, Lo SW, Zhang Y (2003) NMR properties of petroleum reservoir fluids. Magn Reson Imaging 21(3–4):269–277

    Article  Google Scholar 

  50. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM (1984) A review of normal tissue hydrogen relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11:425–448

    Article  Google Scholar 

  51. de Graaf RA, Brown PB, McIntyre S et al (2006) High magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo. Magn Reson Med 56:386–394

    Article  Google Scholar 

  52. Korb J-P, Bryant RG (2002) Magnetic field dependence of proton longitudinal relaxation times. Mag Reson Med 48:21–26

    Article  Google Scholar 

  53. Rooney WD, Johnson G, Li X et al (2007) Magnetic field and tissue dependencies of human brain longitudinal 1H20 relaxation in vivo. Mag Reson Med 57:308–318

    Article  Google Scholar 

  54. Stanisz GJ, Odrobina EE, Pun J et al (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54:507–512

    Article  Google Scholar 

  55. de Graaf RA, Brown PB, McIntyre S, Nixon TW, Behar KL, Rothman DL (2006) High Magnetic Field Water and Metabolite Proton T1 and T2 Relaxation in Rat Brain In Vivo. Magn Reson Med 56:386–394

    Article  Google Scholar 

Download references