large-scale-terrestrial-water-storage-changes-sensed-by-geodesy-–-springer

Large-Scale Terrestrial Water Storage Changes Sensed by Geodesy – Springer

  • Alley WM, Konikow LF (2015) Bringing GRACE down to earth. Groundwater 53(6):826–829

  • Amos CB, Audet P, Hammond WC et al (2014) Uplift and seismicity driven by groundwater depletion in Central California. Nature 509(7501):483–486

  • Argus DF, Fu Y, Landerer FW (2014) Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion. Geophys Res Lett 41. https://doi.org/10.1002/2014GL059570

  • Argus DF, Landerer FW, Wiese DN et al (2017) Sustained water loss in California’s mountain ranges during severe drought from 2012 to 2015 inferred from GPS. J Geophys Res Solid Earth. https://doi.org/10.1002/2017JB014424

  • Bai P, Liu X, Liu C (2018) Improving hydrological simulations by incorporating grace data for model calibration. J Hydrol 557:291–304. https://doi.org/10.1016/j.jhydrol.2017.12.025

  • Bawden GW, Thatcher W, Stein RS et al (2001) Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature 412:812–815

  • Bettinelli P, Avouac J-P, Flouzat M et al (2008) Seasonal variations of seismicity and geodetic strain in the Himalaya induced by surface hydrology. Earth Planet Sci Lett 266(3–4):332–344. https://doi.org/10.1016/j.epsl.2007.11.021

  • Bevis M, Alsdorf D, Kendrick E et al (2005) Seasonal fluctuations in the mass of the Amazon River system and Earth’s elastic response. Geophys Res Lett. https://doi.org/10.1029/2005GL023491

  • Blewitt G, Lavallée D, Clarke P et al (2001) A new global model of earth deformation: seasonal cycle detected. Science 294:2342–2345. https://doi.org/10.1126/science.1065328

  • Blewitt G, Hammond WC, Kreemer C (2018) Harnessing the GPS data explosion for interdisciplinary science. Eos 99. https://doi.org/10.1029/2018EO104623

  • Borsa AA, Agnew DC, Cayan DR (2014) Ongoing drought-induced uplift in the western United States. Science. https://doi.org/10.1126/science.1260279

  • Castle SL, Thomas BF, Reager JT et al (2014) Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophys Res Lett 41:5904–5911. https://doi.org/10.1002/2014GL061055

  • Castle SL, Reager JT, Thomas BF et al (2016) Remote detection of water management impacts on evapotranspiration in the Colorado River Basin. Geophys Res Lett 43:5089–5097. https://doi.org/10.1002/2016GL068675

  • Cavalié O, Doin M-P, Lasserre C et al (2007) Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: probing the lithosphere rheological structure. J Geophys Res. https://doi.org/10.1029/2006JB004344

  • Chanard K, Avouac J-P, Ramillien G et al (2014) Modeling deformation induced by seasonal variations of continental water in the Himalaya region: sensitivity to earth elastic structure. J Geophys Res Solid Earth 119:5097–5113. https://doi.org/10.1002/2013JB010451

  • Chanard K, Fleitout L, Calais E et al (2018) Toward a global horizontal and vertical elastic load deformation model derived from GRACE and GNSS station position time series. J Geophys Res Solid Earth. https://doi.org/10.1002/2017JB015245

  • Chaussard E, Farr TG (2019) A new method for isolating elastic from inelastic deformation in aquifer systems: application to the San Joaquin Valley, CA. Geophys Res Lett 46(19):10800–10809

  • Chaussard E, Bürgmann R, Shirzaei M et al (2014) Predictability of hydraulic head changes and characterization of aquifer-system and fault properties from InSAR-derived ground deformation. J Geophys Res Solid Earth 119(8):6572–6590

  • Chaussard E, Johnson CW, Fattahi H et al (2016) Potential and limits of InSAR to characterize interseismic deformation independently of GPS data: application to the southern San Andreas Fault system. Geochem Geophys Geosyst 17(3):1214–1229

  • Chaussard E, Milillo P, Burgmann R et al (2017) Remote sensing of ground deformation for monitoring groundwater management practices: application to the Santa Clara Valley during the 2012-2015 California drought. J Geophys Res Solid Earth 122(10):8566–8582

  • Chen JL, Wilson CR, Tapley BD (2006) Satellite gravity measurements confirm accelerated melting of Greenland Ice Sheet. Science 313(5795):1958–1960. https://doi.org/10.1126/science.1129007

  • Chen JL, Wilson CR, Famiglietti JS et al (2007) Attenuation effects on Seasonal Basin-scale water storage change from GRACE time-variable gravity. J Geod 81(4):237–245. https://doi.org/10.1007/s00190-006-0104-2

  • Chen JL, Wilson CR, Tapley BD et al (2009) 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J Geophys Res. https://doi.org/10.1029/2008JB006056

  • Chen JL, Famiglietti JS, Scanlon B et al (2016) Groundwater storage changes: present status from GRACE observations. Surv Geophys 37:397–417. https://doi.org/10.1007/s10712-015-9332-4

  • Chen JL, Wilson CR, Tapley BD et al (2017) Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements. J Geophys Res Solid Earth 122:2274–2290. https://doi.org/10.1002/2016JB013595

  • Chew CC, Small EE (2014) Terrestrial water storage response to the 2012 drought estimated from GPS vertical position anomalies. Geophys Res Lett 41:6145–6151. https://doi.org/10.1002/2014GL061206

  • Compton K, Bennett RA, Hreinsdóttir S (2015) Climate-driven vertical acceleration of Icelandic crust measured by continuous GPS geodesy. Geophys Res Lett 42:743–750. https://doi.org/10.1002/2014GL062446

  • Compton K, Bennett RA, Hreinsdóttir S et al (2017) Short-term variations of Icelandic icecap mass inferred from cGPS coordinate time series. Geochem Geophys Geosyst 18:2099–2119. https://doi.org/10.1002/2017GC006831

  • Craig TJ, Chanard K, Calais E (2017) Hydrologically-driven crustal stresses and seismicity in the New Madrid Seismic Zone. Nat Commun 8(1):2143. https://doi.org/10.1038/s41467-017-01696-w

  • Davis JL, Elósegui P, Mitrovica JX et al (2004) Climate-driven deformation of the solid earth from GRACE and GPS. Geophys Res Lett 31:L24605. https://doi.org/10.1029/2004GL021435

  • Doin M-P, Twardzik C, Ducret G et al (2015) InSAR measurement of the deformation around Siling Co Lake: inferences on the lower crust viscosity in Central Tibet. J Geophys Res Solid Earth 120:5290–5310. https://doi.org/10.1002/2014JB011768

  • Döll P, Mueller Schmied H, Schuh C et al (2014) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50:5698–5720. https://doi.org/10.1002/2014WR015595

  • Dziewonski A, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Int 25:297–356

  • Eicker A, Schumacher M, Kusche J et al (2014) Calibration/data assimilation approach for integrating GRACE data into the WaterGAP Global Hydrology Model (WGHM) using an ensemble Kalman filter: first results. Surv Geophys 35(6):1285–1309

  • Eicker A, Forootan E, Springer A et al (2016) Does GRACE see the terrestrial water cycle “intensifying”? J Geophys Res Atmos 121:733–745

  • Enzminger TL, Small EE, Borsa AA (2018) Accuracy of snow water equivalent estimated from GPS vertical displacements: a synthetic loading case study for western U.S. mountains. Water Resour Res 54:581–599. https://doi.org/10.1002/2017WR021521

  • Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4(11):945–948. https://doi.org/10.1038/nclimate2425

  • Famiglietti JS, Lo M, Ho SL et al (2011) Satellites measure recent rates of groundwater depletion in California’s central valley. Geophys Res Lett 38(3):L03403. https://doi.org/10.1029/2010GL046442

  • Farr TG, Liu Z (2015) Monitoring subsidence associated with groundwater dynamics in the Central Valley of California using interferometric radar. In: Lakshmi V (ed) Remote sensing of the terrestrial water cycle, Geophys. Monogr, vol 206. AGU, Washington, D. C

  • Farrell WE (1972) Deformation of the earth by surface loads. Rev Geophys Space Phys 10:761–797. https://doi.org/10.1029/RG010i003p00761

  • Fattahi H, Simons M, Agram P (2017) InSAR time-series estimation of the ionospheric phase delay: an extension of the split range-spectrum technique. IEEE Trans Geosci Remote Sens 55(10):5984–5996

  • Faunt C, Sneed M (2015) Water availability and subsidence in California’s central valley, San Franc. Estuary Watershed Sci 13:1–8

  • Faunt CC, Sneed M, Traum J et al (2016) Water availability and land subsidence in the Central Valley, California, USA. Hydrogeol J 24:1–10. https://doi.org/10.1007/s10040-015-1339-x

  • Feng W, Zhong M, Lemoine J-M et al (2013) Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements. Water Resour Res 49:2110–2118. https://doi.org/10.1002/wrcr.20192

  • Forman BA, Reichle RH, Rodell M (2012) Assimilation of terrestrial water storage from GRACE in a snow-dominated basin. Water Resour Res. https://doi.org/10.1029/2011WR011239

  • Fu Y, Freymueller JT (2012) Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements. J Geophys Res. https://doi.org/10.1029/2011JB008925

  • Fu Y, Freymueller JT, Jensen T (2012a) Seasonal hydrological loading in southern Alaska observed by GPS and GRACE. Geophys Res Lett. https://doi.org/10.1029/2012GL052453

  • Fu Y, Freymueller JT, van Dam T (2012b) The effect of using inconsistent ocean tidal loading models on GPS coordinate solutions. J Geod 86(6):409–421. https://doi.org/10.1007/s00190-011-0528-1

  • Fu Y, Argus DF, Freymueller JT, Heflin MB (2013) Horizontal motion in elastic response to seasonal loading of rain water in the Amazon Basin and monsoon water in Southeast Asia observed by GPS and inferred from GRACE. Geophys Res Lett 40:6048–6053. https://doi.org/10.1002/2013GL058093

  • Fu Y, Argus DF, Landerer FW (2015) GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon. J Geophys Res Solid Earth 120:552–566. https://doi.org/10.1002/2014JB011415

  • Galloway DL, Burbey TJ (2011) Review: regional land subsidence accompanying groundwater extraction. Hydrogeol J 19(8):1459–1486. https://doi.org/10.1007/s10040-011-0775-5

  • Galloway DL, Hudnut KW, Ingebritsen S et al (1998) Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour Res 34:2573–2585. https://doi.org/10.1029/98WR01285

  • Geng J, Williams SDP, Teferle FN et al (2012) Detecting storm surge loading deformations around the southern North Sea using subdaily GPS. Geophys J Int 19(2):569–578

  • Girotto M, Lannoy GJM, Reichle RH et al (2016) Assimilation of gridded terrestrial water storage observations from GRACE into a land surface model. Water Resour Res 52:4164–4183. https://doi.org/10.1002/2015WR018417

  • Girotto M, De Lannoy GJM, Reichle RH et al (2017) Benefits and pitfalls of GRACE data assimilation: a case study of terrestrial water storage depletion in India. Geophys Res Lett 44:4107–4115. https://doi.org/10.1002/2017GL072994

  • Grapenthin R, Sigmundsson F, Geirsson H et al (2006) Icelandic rhythmics: annual modulation of land elevation and plate spreading by snow load. Geophys Res Lett. https://doi.org/10.1029/2006GL028081

  • Hammond WC, Blewitt G, Kreemer C (2016) GPS imaging of vertical land motion in California and Nevada: implications for Sierra Nevada uplift. J Geophys Res Solid Earth 121. https://doi.org/10.1002/2016JB013458

  • Hanssen RF (2001) Radar interferometry: data interpretation and error analysis. Kluwer Acad, Dordrecht

  • Heki K (2003) Snow load and seasonal variation of earthquake occurrence in Japan. Earth Planet Sci Lett 207(1–4):159–164. https://doi.org/10.1016/S0012-821X(02)01148-2

  • Heki K (2004) Dense GPS array as a new sensor of seasonal changes of surface loads. In: Sparks RSJ, Hawkesworth CJ (eds) The state of the planet: Frontiers and challenges in geophysics, Geophys. Monogr. Ser, vol 150. AGU, Washington, D. C, pp 177–196. https://doi.org/10.1029/150GM15

  • Herring TA, Melbourne TI, Murray MH et al (2016) Plate boundary observatory and related networks: GPS data analysis methods and geodetic products. Rev Geophys 54:759–808. https://doi.org/10.1002/2016RG000529

  • Hoffmann J, Galloway DL, Zebker HA (2003) Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resour Res 39(2):1031. https://doi.org/10.1029/2001WR001252

  • Hooper A, Segall P, Zebker HA (2007) Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J Geophys Res. https://doi.org/10.1029/2006JB004763

  • Houborg R, Rodell M, Li B et al (2012) Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour Res. https://doi.org/10.1029/2011WR011291

  • Ito T, Simons M (2011) Probing asthenospheric density, temperature, and elastic moduli below the western United States. Science 332:947–951

  • Johnson CW, Fu Y, Bürgmann R (2017a) Seasonal water storage, stress modulation, and California seismicity. Science 356:1161–1164. https://doi.org/10.1126/science.aak9547

  • Johnson CW, Fu Y, Bürgmann R (2017b) Stress models of the annual hydrospheric, atmospheric, thermal, and tidal loading cycles on California faults: perturbation of background stress and changes in seismicity. J Geophys Res 122:10,605–10,625. https://doi.org/10.1002/2017JB014778

  • Karegar MA, Dixon TH, Kusche J et al (2018) A new hybrid method for estimating hydrologically induced vertical deformation from GRACE and a hydrological model: an example from Central North America. J Adv Model Earth Syst. https://doi.org/10.1029/2017MS001181

  • Kaufmann G, Amelung F (2000) Reservoir-induced deformation and continental rheology in the vicinity of Lake Mead. J Geophys Res, Nevada. https://doi.org/10.1029/2000JB900079

  • King NE, Argus D, Langbein J et al (2007) Space geodetic observation of expansion of the San Gabriel Valley, California, aquifer system, during heavy rainfall in winter 2004–2005. J Geophys Res. https://doi.org/10.1029/2006JB004448

  • Larsen KM (2019) Unanticipated uses of the global positioning system. Annu Rev Earth Planet Sci 47:19–40. https://doi.org/10.1146/annurev-earth-053018-060203

  • Larson KM (2016) GPS interferometric reflectometry: applications to surface soil moisture, snow depth, and vegetation water content in the western United States. Wiley Interdiscip Rev Water 3(6):775–787. https://doi.org/10.1002/wat2.1167

  • Larson KM, Small EE, Gutmann E et al (2008) Use of GPS receivers as a soil moisture network for water cycle studies. Geophys Res Lett. https://doi.org/10.1029/2008GL036013

  • Larson KM, Gutmann E, Zavorotny VU et al (2009) Can we measure snow depth with GPS receivers? Geophys Res Lett. https://doi.org/10.1029/2009GL039430

  • Larson KM, Ray RD, Nievinski FG et al (2013) The accidental tide gauge: a GPS reflections case study from Kachemak Bay, Alaska. IEEE Geosci Remote Sens Lett. https://doi.org/10.1109/LGRS.2012.2236075

  • Li Z, Fielding EJ, Cross P et al (2006) Interferometric synthetic aperture radar atmospheric correction: GPS topography-dependent turbulence model. J Geophys Res 111:B02404. https://doi.org/10.1029/2005JB003711

  • Li B, Rodell M, Zaitchik BF et al (2012) Assimilation of GRACE terrestrial water storage into a land surface model: evaluation and potential value for drought monitoring in western and Central Europe. J Hydrol 446:103–115

  • Longuevergne L, Scanlon BR, Wilson CR (2010) GRACE hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res 46:W11517. https://doi.org/10.1029/2009WR008564

  • Martens HR, Rivera L, Simons M et al (2016) The sensitivity of surface mass loading displacement response to perturbations in the elastic structure of the crust and mantle. J Geophys Res 121(5):3911–3938. https://doi.org/10.1002/2015JB012456

  • Meyer F, Nicoll J (2008) The impact of the ionosphere on interferometric SAR processing. IEEE international geoscience and remote sensing symposium, p II-391–II-394, IEEE, Boston, Mass

  • Miller MM, Shirzaei M, Argus D (2017) Aquifer mechanical properties and decelerated compaction in Tucson, Arizona. J Geophys Res Solid Earth. https://doi.org/10.1002/2017JB014531

  • Milliner C, Materna K, Bürgmann R et al (2018) Tracking the weight of Hurricane Harvey’s Stormwater using GPS data. Sci Adv. https://doi.org/10.1126/sciadv.aau2477

  • Milzow C, Krogh PE, Bauer-Gottwein P (2011) Combining satellite radar altimetry, SAR surface soil moisture and GRACE total storage changes for hydrological model calibration in a large poorly gauged catchment. Hydrol Earth Syst Sci 15:1729–1743. https://doi.org/10.5194/hess-15-1729-2011

  • Miro ME, Famiglietti JS (2018) Downscaling GRACE remote sensing datasets to high-resolution groundwater storage change maps of California’s central valley. Remote Sens. https://doi.org/10.3390/rs10010143

  • Mitchell KE, Lohmann D, Houser PR et al (2004) The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res 109:D07S90. https://doi.org/10.1029/2003JD003823

  • Murray KD, Lohman RB (2018) Short-lived pause in Central California subsidence after heavy winter precipitation of 2017. Sci Adv. https://doi.org/10.1126/sciadv.aar8144

  • Ojha C, Shirzaei M, Werth S et al (2018) Sustained groundwater loss in California’s Central Valley exacerbated by intense drought periods. Water Resour Res. https://doi.org/10.1029/2017WR022250

  • Ojha C, Werth S, Shirzaei M (2019) Groundwater loss and aquifer system compaction in San Joaquin Valley during 2012–2015 drought. J Geophys Res Solid Earth 124:3127–3143. https://doi.org/10.1029/2018JB016083

  • Ouellette KJ, de Linage C, Famiglietti JS (2013) Estimating snow water equivalent from GPS vertical site-position observations in the western United States. Water Resour Res 49:2508–2518. https://doi.org/10.1002/wrcr.20173

  • Penna NT, Stewart MP (2003) Aliased tidal signatures in continuous GPS height time series. Geophys Res Lett. https://doi.org/10.1029/2003GL018828

  • Penna NT, King MA, Stewart MP (2007) GPS height time series: short-period origins of spurious long-period signals. J Geophys Res. https://doi.org/10.1029/2005JB004047

  • Poland JF, Lofgren BE, Ireland RL et al (1975) Land subsidence in the San Joaquin Valley, California, as of 1972. US. Geol Surv. https://doi.org/10.3133/pp437H

  • Ramillien G, Frappart F, Guntner A et al (2006) Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water Resour Res 42:W10403. https://doi.org/10.1029/2005WR004331

  • Ramillien G, Famiglietti JS, Wahr J (2008) Detection of continental hydrology and glaciology signals from GRACE: a review. Surv Geophys. https://doi.org/10.1007/s10712-008-9048-9

  • Ray J, Altamimi Z, Collieux X et al (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12:55–64. https://doi.org/10.1007/s10291-007-0067-7

  • Remy D, Bonvalot S, Briole P et al (2003) Accurate measurements of tropospheric effects in volcanic areas from SAR interferometry data: application to Sakurajima volcano (Japan). Earth Planet Sci Lett 213:299–310. https://doi.org/10.1016/S0012-821X(03)00331-5

  • Richey AS, Thomas BF, Lo M-H et al (2015) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51:5217–5238. https://doi.org/10.1002/2015WR017349

  • Riel B, Simons M, Ponti D et al (2018) Quantifying ground deformation in the Los Angeles and Santa Ana Coastal Basins due to groundwater withdrawal. Water Resour Res. https://doi.org/10.1029/2017WR021978

  • Rodell M, Famiglietti JS (1999) Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour Res 35:2705–2723

  • Rodell M, Famiglietti JS (2002) The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, central U.S. J Hydrol 263:245–256

  • Rodell M, Houser PR, Jambor U et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85:381–394

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002

  • Rodell M, Famiglietti JS, Wiese DN et al (2018) Emerging trends in global freshwater availability. Nature 557(7707):651–659. https://doi.org/10.1038/s41586-018-0123-1

  • Save H, Bettadpur S, Tapley BD (2016) High-resolution CSR GRACE RL05 mascons. J Geophys Res Solid Earth 121:7547–7569. https://doi.org/10.1002/2016JB013007

  • Scanlon BR, Faunt CC, Longuevergne L et al (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci USA 109(24):9320–9325. https://doi.org/10.1073/pnas.1200311109

  • Scanlon BR, Zhang Z, Save H et al (2016) Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour Res 52:9412–9429. https://doi.org/10.1002/2016WR019494

  • Scanlon BR, Zhang ZZ, Save H et al (2018) Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc Natl Acad Sci USA 115(6):E1080–E1089. https://doi.org/10.1073/pnas.1704665115

  • Scanlon BR, Zhang Z, Rateb A et al (2019) Tracking seasonal fluctuations in land water storage using global models and GRACE satellites. Geophys Res Lett 46(10):5254–5264. https://doi.org/10.1029/2018GL081836

  • Schumacher M, Forootan E, van Dijk AIJM et al (2018) Improving drought simulations within the Murray-Darling Basin by combined calibration/assimilation of GRACE data into the WaterGAP Global Hydrology Model. Remote Sens Environ 204:212–228. https://doi.org/10.1016/j.rse.2017.10.029

  • Seoane L, Ramillien G, Frappart F et al (2013) Regional GRACE-based estimates of water mass variations over Australia: validation and interpretation. Hydrol Earth Syst Sci 17:4925–4939

  • Seyoum WM, Milewski AM (2017) Improved methods for estimating local terrestrial water dynamics from GRACE in the Northern High Plains. Adv Water Resour 110:279–290. https://doi.org/10.1016/j.advwatres.2017.10.021

  • Small EE, Larson KM, Braun JJ (2010) Sensing vegetation growth with GPS reflections. Geophys Res Lett. https://doi.org/10.1029/2010GL042951

  • Smith R, Knight R, Chen J et al (2017) Estimating the permanent loss of groundwater storage in the southern San Joaquin Valley, California. Water Resour Res 53:2133–2148. https://doi.org/10.1002/2016WR019861

  • Stampoulis D, Reager JT, David CH et al (2019) Model-data fusion of hydrologic simulations and GRACE terrestrial water storage observations to estimate changes in water table depth. Adv Water Resour 128:13–27. https://doi.org/10.1016/j.advwatres.2019.04.004

  • Steckler MS, Nooner SL, Akhter SH et al (2010) Modeling earth deformation from monsoonal flooding in Bangladesh using hydrographic, GPS, and Gravity Recovery and Climate Experiment (GRACE) data. J Geophys Res. https://doi.org/10.1029/2009JB007018

  • Strassberg G, Scanlon BR, Rodell M (2007) Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains Aquifer (USA). Geophys Res Lett. https://doi.org/10.1029/2007GL030139

  • Swenson SC, Lawrence DM (2015) A GRACE-based assessment of interannual groundwater dynamics in the Community Land Model. Water Resour Res 51:8817–8833. https://doi.org/10.1002/2015WR017582

  • Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J Geophys Res. https://doi.org/10.1029/2001JB000576

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett. https://doi.org/10.1029/2005GL025285

  • Tapley BD, Bettadpur S, Watkins MM et al (2004) The Gravity Recovery and Climate Experiment: Mission overview and early results. Geophys Res Lett. https://doi.org/10.1029/2004GL019920

  • Tapley BD, Watkins MM, Flechtner F et al (2019) Contributions of GRACE to understanding climate change. Nat Clim Chang 9:358–369. https://doi.org/10.1038/s41558-019-0456-2

  • Thomas BF, Famiglietti JS (2019) Identifying climate-induced groundwater depletion in GRACE observations. Sci Rep 9(1):1–9

  • Thomas AC, Reager JT, Famiglietti JS et al (2014) A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys Res Lett 41:1537–1545. https://doi.org/10.1002/2014GL059323

  • Thomas BF, Landerer FW, Wiese DN et al (2016) A comparison of watershed storage trends over the eastern and upper Midwestern regions of the United States, 2003–2015. Water Resour Res 52:6335–6347. https://doi.org/10.1002/2016WR018617

  • Thomas BF, Famiglietti JS, Landerer FW et al (2017) GRACE groundwater drought index: evaluation of California Central Valley groundwater drought. Remote Sens Environ 198:384–392. https://doi.org/10.1016/j.rse.2017.06.026

  • Tian S, Tregoning P, Renzullo LJ et al (2017) Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals. Water Resour Res 53:1820–1840. https://doi.org/10.1002/2016WR019641

  • Tregoning P, Watson C, Ramillien G et al (2009) Detecting hydrologic deformation using GRACE and GPS. Geophys Res Lett. https://doi.org/10.1029/2009GL038718

  • Tsai VC (2011) A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations. J Geophys Res. https://doi.org/10.1029/2010JB008156

  • van Dam T, Wahr J, Milly PCD et al (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28:651–654

  • van Dam T, Wahr J, Lavallée D (2007) A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe. J Geophys Res. https://doi.org/10.1029/2006JB004335

  • Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett. https://doi.org/10.1029/2009GL040222

  • Voss KA, Famiglietti JS, Lo M et al (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour Res 49:904–914. https://doi.org/10.1002/wrcr.20078

  • Wadge G, Webley PW, James IN et al (2002) Atmospheric models, GPS and InSAR measurements of the tropospheric water vapour field over Mount Etna. Geophys Res Lett. https://doi.org/10.1029/2002GL015159

  • Wahr J, Swenson S, Zlotnicki V et al (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett. https://doi.org/10.1029/2004GL019779

  • Wahr J, Khan SA, van Dam T et al (2013) The use of GPS horizontals for loading studies, with applications to Northern California and southeast Greenland. J Geophys Res Solid Earth 118:1795–1806. https://doi.org/10.1002/jgrb.50104

  • Wang H, Xiang L, Jia L et al (2012) Load Love numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0. Comput Geosci 49:190–199

  • Watkins MM, Wiese DN, Yuan DN et al (2015) Improved methods for observing earth’s time variable mass distribution with grace using spherical cap mascons. J Geophys Res Solid Earth 120:2648–2671. https://doi.org/10.1002/2014JB011547

  • Wiese DN, Landerer FW, Watkins MM (2016) Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour Res 52:7490–7502. https://doi.org/10.1002/2016WR019344

  • Wouters B, Gardner AS, Moholdt G (2019) Global glacier mass loss during the GRACE satellite mission (2002–2016). Front Earth Sci. https://doi.org/10.3389/feart.2019.00096

  • Wu X, Heflin MB, Ivins ER et al (2003) Large-scale global surface mass variations inferred from GPS measurements of load-induced deformation. Geophys Res Lett. https://doi.org/10.1029/2003GL017546

  • Yeh PJ, Swenson SC, Famiglietti JS et al (2006) Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res. https://doi.org/10.1029/2006WR005374

  • Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi River Basin. J Hydrometeorol 9:535–548. https://doi.org/10.1175/2007JHM951.1