mechanical-performance-and-anisotropic-analysis-of-rubberised-3d-printed-concrete-incorporating-pp-fibre-–-springer

Mechanical performance and anisotropic analysis of rubberised 3D-printed concrete incorporating PP fibre – Springer

References

  • Abdallah S, Fan M, Cashell KA (2017) Bond-slip behaviour of steel fibres in concrete after exposure to elevated temperatures. Constr Build Mater 140:542–551

    Article  Google Scholar 

  • Akbar Arslan, Liew K.M. (2020) Assessing recycling potential of carbon fiber reinforced plastic waste in production of eco-efficient cement-based materials. J Clean Prod 274:123001. https://doi.org/10.1016/j.jclepro.2020.123001

  • Alami AH, Olabi AG, Ayoub M, Aljaghoub H, Alasad S, Abdelkareem MA (2023) 3D concrete printing: recent progress, applications, challenges, and role in achieving sustainable development goals. Buildings 13(4):924. https://doi.org/10.3390/buildings13040924

    Article  Google Scholar 

  • Alsaif A, Koutas L, Bernal SA, Guadagnini M, Pilakoutas K (2018) Mechanical performance of steel fibre reinforced rubberised concrete for flexible concrete pavements. Constr Build Mater 172:533–543

    Article  Google Scholar 

  • Alyousef R (2021) Sustainable use of waste polypropylene fibres to enhance the abrasion and skid resistance of two-stage concrete. Sustainability 13(9):5200. https://doi.org/10.3390/su13095200

    Article  CAS  Google Scholar 

  • Antarvedi B, Banjara NK, Singh S (2023) Optimisation of polypropylene and steel fibres for the enhancement of mechanical properties of fibre-reinforced concrete. Asian J Civ Eng 24:1055–1075

    Article  Google Scholar 

  • Atahan AO, Yücel AÖ (2012) Crumb rubber in concrete: static and dynamic evaluation. Constr Build Mater 36:617–622

    Article  Google Scholar 

  • Standards Australia (2000) AS 1012.11: Methods of testing concrete determination of the modulus of rupture (Reconfirmed 2014). Standards Australia

  • Standards Australia (2014) AS 1012.9:2014: Methods of testing concrete compressive strength tests – Concrete, mortar and grout specimens. Standards Australia

  • Behfarnia K, Farshadfar O (2013) The effects of pozzolanic binders and polypropylene fibers on durability of SCC to magnesium sulfate attack. Constr Build Mater 38:64–71

    Article  CAS  Google Scholar 

  • Chen M, Li L, Wang J, Huang Y, Wang S, Zhao P, Lu L, Cheng X (2020) Rheological parameters and building time of 3D printing sulphoaluminate cement paste modified by retarder and diatomite. Construct Build Mater 234:117391. https://doi.org/10.1016/j.conbuildmat.2019.117391

  • Ding M, Zhang F, Ling X, Lin Bo (2018) Effects of freeze-thaw cycles on mechanical properties of polypropylene fiber and cement stabilized clay. Cold Reg Sci Technol 154:155–165

    Article  Google Scholar 

  • Elchalakani M (2015) High strength rubberized concrete containing silica fume for the construction of sustainable road side barriers. Structures 1:20–38

    Article  Google Scholar 

  • El-Seidy E, Sambucci M, Chougan M, Al-Kheetan MJ, Biblioteca I, Valente M, Ghaffar SH (2022) Mechanical and physical characteristics of alkali-activated mortars incorporated with recycled polyvinyl chloride and rubber aggregates. J Build Eng 60:105043. https://doi.org/10.1016/j.jobe.2022.105043

  • Feng W, Wang Y, Sun J, Tang Y, Dongxiao Wu, Jiang Z, Wang J, Wang X (2022) Prediction of thermo-mechanical properties of rubber-modified recycled aggregate concrete. Constr Build Mater 318:125970

    Article  Google Scholar 

  • Chinese Standards Association (2005) GB/T 2419–2005: Test method for fluidity of cement mortar. Chinese Standards Association

  • Gerges NN, Issa CA, Fawaz SA (2018) Rubber concrete: mechanical and dynamical properties. Case Studies in Construction Materials 9. https://doi.org/10.1016/j.cscm.2018.e00184

  • Gesoglu M, Güneyisi E, Muhyaddin GF, Asaad DS (2016) Strain hardening ultra-high performance fiber reinforced cementitious composites: effect of fiber type and concentration. Compos B Eng 103:74–83

    Article  CAS  Google Scholar 

  • Hambach M, Volkmer D (2017) Properties of 3D-printed fiber-reinforced Portland cement paste. Cement Concr Compos 79:62–70

    Article  CAS  Google Scholar 

  • Hambach J, Kümmel K, Metternich J (2017) Development of a digital continuous improvement system for production. Procedia CIRP 63:330–335. https://doi.org/10.1016/j.procir.2017.03.086

    Article  Google Scholar 

  • Han Y, Yang Z, Ding T, Xiao J (2021). Environmental and economic assessment on 3D printed buildings with recycled concrete. J Clean Prod 278:123884. https://doi.org/10.1016/j.jclepro.2020.123884

  • He H, Qiao H, Sun T, Yang H, He C (2024) Research progress in mechanisms, influence factors and improvement routes of chloride binding for cement composites. J Build Eng 108978 https://doi.org/10.1016/j.jobe.2024.78

  • Holmes N, Browne A, Montague C (2014) Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Constr Build Mater 73:195–204

    Article  Google Scholar 

  • Hossain FM, Shahjalal ZM, Islam K, Tiznobaik M, Shahria Alam M (2019) Mechanical properties of recycled aggregate concrete containing crumb rubber and polypropylene fiber. Constr Build Mater 225:983–996

    Article  CAS  Google Scholar 

  • International Organization for Standardization (2006) ISO 14040: 2006 Environmental management – Life cycle assessment – Principles and framework. International Organization for Standardization

  • Jain K, Negi BS (2021) Analysis of steel fibre reinforced concrete beams in flexure: the experimental investigation. Asian J Civ Eng 22:1625–1637

    Article  Google Scholar 

  • Jawad ZF, Ghayyib RJ, Salman AJ (2020) Microstructural and compressive strength analysis for cement mortar with industrial waste materials. Civ Eng J 6:1007–1016

    Article  Google Scholar 

  • Jia C, Qiang X, Jiang X (2022) Comparative analysis of carbon emission of special-shaped concrete pier constructed by 3D printing and traditional construction.” In IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People’s Republic of China, 21–23 September 2022, 2016–23. IABSE Congress Nanjing 2022

  • Khan SU, Ayub T (2022) Mechanical properties of hybrid self-compacting fibre-reinforced concrete (SCC-FRC) containing PVA and PP fibres. Iran J Sci Technol Trans Civ Eng 46:2677–2695

    Article  Google Scholar 

  • Lai D, Pellegrino C, Faleschini F, Zanini MA, Matos JC, Casas JR, Strauss A (2022) Development of a steel fiber-reinforced rubber concrete for jacketing of bridge piers against vehicular impacts: Preliminary results. In: Pellegrino C, Faleschini F, Zanini MA, Matos JC, Casas JR, Strauss A (eds) Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures. EUROSTRUCT 2021. Lecture Notes in Civil Engineering, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-030-91877-4_130

  • Levchenko AV, Shitikova MV (2024) The analysis of the strength characteristics of rubber concrete as compared with ordinary cement concrete. In: Radionov AA, Ulrikh DV, Timofeeva SS, Alekhin VN, Gasiyarov VR (eds) Proceedings of the 7th International Conference on Construction, Architecture and Technosphere Safety. ICCATS 2023. Lecture Notes in Civil Engineering, vol 400. Springer, Cham. https://doi.org/10.1007/978-3-031-47810-9_12

  • Liu C, Cui J, Zhang Z, Liu H, Huang X, Zhang C (2021a) The role of TBM asymmetric tail-grouting on surface settlement in coarse-grained soils of urban area: Field tests and FEA modelling. Tunn Undergr Space Technol 111:103857. https://doi.org/10.1016/j.tust.2021.103857

  • Liu Y, Wang L, Cao K, Sun L (2021b). Review on the durability of polypropylene fibre-reinforced concrete. Adv Civ Eng 6652077. https://doi.org/10.1155/2021/6652077

  • Liu B, Liu X, Li G, Geng S, Li Z, Weng Y, Qian K (2022a) Study on anisotropy of 3D printing PVA fiber reinforced concrete using destructive and non-destructive testing methods. Case Stud Constr Mater 17:e01519

    Google Scholar 

  • Liu J, Setunge S, Tran P (2022b) 3D concrete printing with cement-coated recycled crumb rubber: compressive and microstructural properties. Constr Build Mater 347:128507

    Article  Google Scholar 

  • Long Xu, Mao M-H, Tian-xiong Su, Yu-tai Su, Tian M-k (2023) Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates. Def Technol 23:100–111. https://doi.org/10.1016/j.dt.2022.02.003

    Article  CAS  Google Scholar 

  • Mohammed B, Azmi N (2011) Failure mode and modulus elasticity of concrete containing recycled tire rubber. J Solid Waste Technol Manag 37:16–24

    Article  Google Scholar 

  • Mujalli MA, Dirar S, Mushtaha E, Hussien A, Maksoud A (2022) Evaluation of the tensile characteristics and bond behaviour of steel fibre-reinforced concrete: An overview. Fibers 10(12):104. https://doi.org/10.3390/fib10120104

    Article  CAS  Google Scholar 

  • Najim KB, Hall MR (2012) Mechanical and dynamic properties of self-compacting crumb rubber modified concrete. Constr Build Mater 27:521–530

    Article  Google Scholar 

  • Nebrida JA (2022) Automated onsite construction: 3D printing technology. J Eng Res Rep 23(1):47–55. https://doi.org/10.9734/jerr/2022/v23i117590

    Article  Google Scholar 

  • Nerella VN, Hempel S, Mechtcherine V (2019) Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing. Constr Build Mater 205:586–601

    Article  CAS  Google Scholar 

  • Nuaklong P, Chittanurak J, Jongvivatsakul P, Pansuk W, Lenwari A, Likitlersuang S (2020) Effect of hybrid polypropylene-steel fibres on strength characteristics of UHPFRC. Adv Concr Constr 10:1–11

    Google Scholar 

  • Pan L, Hao H, Cui J, Pham TM (2023) Numerical study on dynamic properties of rubberised concrete with different rubber contents. Def Technol. https://doi.org/10.1016/j.dt.2022.04.007

  • Panda B, Paul SC, Tan MJ (2017) Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater Lett 209:146–149

    Article  CAS  Google Scholar 

  • Laghi V, Shakor P, PandaB (2023) Additive manufacturing for construction

  • Pang Bo, Zheng H, Jin Z, Hou D, Zhang Y, Song X, Sun Y, Liu Z, She W, Yang L (2024) Inner superhydrophobic materials based on waste fly ash: microstructural morphology of microetching effects. Compos B Eng 268:111089. https://doi.org/10.1016/j.compositesb.2023.89

    Article  CAS  Google Scholar 

  • Petrovic V, Gonzalez JVH, Ferrando OJ, Gordillo JD, Puchades JRB, Griñan LP (2010) Additive layered manufacturing: sectors of industrial application shown through case studies. Int J Prod Res 49:1061–1079

    Article  Google Scholar 

  • Pham TM, Elchalakani M, Karrech A, Hao H (2018a) Axial impact behavior and energy absorption of rubberized concrete with/without fiber-reinforced polymer confinement. Int J Protective Struct 10:154–173

    Article  Google Scholar 

  • Pham TM, Zhang X, Elchalakani M, Karrech A, Hao H, Ryan A (2018b) Dynamic response of rubberized concrete columns with and without FRP confinement subjected to lateral impact. Constr Build Mater 186:207–218

    Article  Google Scholar 

  • Pham TM, Elchalakani M, Hao H, Lai J, Ameduri S, Tran TM (2019) Durability characteristics of lightweight rubberized concrete. Constr Build Mater 224:584–599

    Article  CAS  Google Scholar 

  • Pierce CE, Blackwell MC (2003) Potential of scrap tire rubber as lightweight aggregate in flowable fill. Waste Manag 23:197–208

    Article  CAS  Google Scholar 

  • Qiu J, Xing M, Yang Z, Zhang C, Guan X (2020) Micro-pore structure characteristics and macro-mechanical properties of PP fibre reinforced coal gangue ceramsite concrete. J Eng 2020:1192–1197

    Google Scholar 

  • Raffoul S, Garcia R, Pilakoutas K, Guadagnini M, Medina NF (2016) Optimisation of rubberised concrete with high rubber content: an experimental investigation. Constr Build Mater 124:391–404

    Article  CAS  Google Scholar 

  • Rehman AU, Kim J-H (2021) 3D concrete printing: A systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics. Materials 14(14):3800. https://doi.org/10.3390/ma14143800

    Article  CAS  Google Scholar 

  • Saberian M, Shi L, Sidiq A, Li J, Setunge S, Li C-Q (2019) Recycled concrete aggregate mixed with crumb rubber under elevated temperature. Constr Build Mater 222:119–129

    Article  Google Scholar 

  • Said M, Montaser W, Elgammal AS, Zahir AH, Shaaban IG (2021) Shear strength of reinforced mortar beams containing polyvinyl alcohol fibre (PVA). Int J Civ Eng 19:1155–1178

    Article  Google Scholar 

  • Sambucci M, Biblioteca I, Valente M (2023) Life Cycle Assessment (LCA) of 3D concrete printing and casting processes for cementitious materials incorporating ground waste tire rubber. Recycling 8(1):15. https://doi.org/10.3390/recycling8010015

    Article  Google Scholar 

  • Shobeiri V, Bennett B, Xie T, Visintin P (2021) A comprehensive assessment of the global warming potential of geopolymer concrete. J Clean Prod 297:126669. https://doi.org/10.1016/j.jclepro.2021.126669

  • Singh A, Chen Z, Duan Z, Li L (2022) Utilization potential of steel fibers in 3D printed functionally graded cementitious composite: An experimental approach. Mater Lett 324:132765. https://doi.org/10.1016/j.matlet.2022.132765

  • Singh A, Wang Y, Zhou Y, Sun J, Xu X, Li Y, Liu Z, Chen J, Wang X (2023a) Utilization of antimony tailings in fiber-reinforced 3D printed concrete: A sustainable approach for construction materials. Constr Build Mater 408:133689. https://doi.org/10.1016/j.conbuildmat.2023.133689

  • Singh N, Colangelo F, Farina I (2023b) Sustainable non-conventional concrete 3D printing—a review. Sustainability 15(3):10121

    Article  Google Scholar 

  • Strukar K, Kalman Šipoš T, Dokšanović T, Rodrigues H (2018) Experimental study of rubberized concrete stress-strain behavior for improving constitutive models. Materials 11(11):2245. https://doi.org/10.3390/ma11112245

    Article  CAS  Google Scholar 

  • Sun J, Aslani F, Wei J, Wang X (2021a) Electromagnetic absorption of copper fiber oriented composite using 3D printing. Constr Build Mater 300:124026

    Article  CAS  Google Scholar 

  • Sun J, Lin S, Zhang G, Sun Y, Zhang J, Chen C, Morsy AM, Wang X (2021) The effect of graphite and slag on electrical and mechanical properties of electrically conductive cementitious composites. Constr Build Mater 281:122606. https://doi.org/10.1016/j.conbuildmat.2021.122606

  • Sun J, Wang X, Zhang J, Xiao F, Sun Y, Ren Z, Zhang G, Liu S, Wang Y (2021c) Multi-objective optimisation of a graphite-slag conductive composite applying a BAS-SVR based model. J Build Eng 44:103223

    Article  Google Scholar 

  • Sun J, Wang Y, Liu S, Dehghani A, Xiang X, Wei J, Wang X (2021d) Mechanical, chemical and hydrothermal activation for waste glass reinforced cement. Constr Build Mater 301:124361

    Article  CAS  Google Scholar 

  • Sun J, Tang Y, Wang J, Wang X, Wang J, Yu Z, Cheng Q, Wang Y (2022a) A multi-objective optimisation approach for activity excitation of waste glass mortar. J Mater Res Technol 17:2280–2304

    Article  CAS  Google Scholar 

  • Sun J, Wang Y, Li K, Yao X, Zhu B, Wang J, Dong Q, Wang X (2022) Molecular interfacial properties and engineering performance of conductive fillers in cementitious composites. J MaterRes Technol 19:591–604. https://doi.org/10.1016/j.jmrt.2022.05.061

    Article  CAS  Google Scholar 

  • Sun J, Tang W, Wang Y, Yao X, Huang Bo, Saafi M, Wang X (2023) Electromagnetic and mechanical performance of 3D printed wave-shaped copper solid superstructures. J Market Res 27:6936–6946

    CAS  Google Scholar 

  • Ul Aleem MA, Siddique MS, Farooq SH, Usman M, Ahsan MH, Hussain M, Hanif A (2022) Axial compressive behavior of concrete incorporating crumb rubber pretreated with waste quarry dust. J Build Eng 59:105086. https://doi.org/10.1016/j.jobe.2022.105086

  • Wang X, Jia L, Jia Z, Zhang C, Chen Y, Ma L, Wang Z, Deng Z, Banthia N, Zhang Y (2022) Optimization of 3D printing concrete with coarse aggregate via proper mix design and printing process. J Build Eng 56:104745. https://doi.org/10.1016/j.jobe.2022.104745

  • Weng Y, Li M, Ruan S, Wong TN, Tan M J, Ow Yeong KL, Qian S (2020) Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. J Clean Prod 261:121245. https://doi.org/10.1016/j.jclepro.2020.121245

  • Xiao C, Zheng Ke, Chen S, Li N, Shang X, Wang F, Liang J, Khan SB, Shen Y, Bingheng Lu (2023) Additive manufacturing of high solid content lunar regolith simulant paste based on vat photopolymerization and the effect of water addition on paste retention properties. Addit Manuf 71:103607. https://doi.org/10.1016/j.addma.2023.07

    Article  CAS  Google Scholar 

  • Yang S, Zhang Y, Sha Z, Huang Z, Wang H, Wang F, Li J (2022) Deterministic manipulation of heat flow via three-dimensional-printed thermal meta-materials for multiple protection of critical components. ACS Appl Mater Interfaces 14:39354–39363. https://doi.org/10.1021/acsami.2c09602

    Article  CAS  Google Scholar 

  • Yao X, Lyu X, Sun J, Wang B, Wang Y, Yang M, Wei Y, Elchalakani M, Li D, Wang X (2023) AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition. Constr Build Mater 375:130898. https://doi.org/10.1016/j.conbuildmat.2023.130898

  • Ye J, Cui C, Yu J, Yu K, Dong F (2021) Effect of polyethylene fiber content on workability and mechanical-anisotropic properties of 3D printed ultra-high ductile concrete. Constr Build Mater 281:122586. https://doi.org/10.1016/j.conbuildmat.2021.122586

  • Yu G, Cheng G, Li L, Tang C, Ren Bo, Han Y (2020) Preliminary study on high-energy and low-energy microfracture event evolution characteristics in the development process of rock failure. Geofluids 2020:1–17

    CAS  Google Scholar 

  • Zhou T, Fangzhou Yu, Li L, Dong Z, Fini EH (2023) Swelling-degradation dynamic evolution behaviors of bio-modified rubberized asphalt under thermal conditions. J Clean Prod 426:139061. https://doi.org/10.1016/j.jclepro.2023.61

    Article  CAS  Google Scholar 

  • Zhu B, Wang Y, Sun J, Wei Y, Ye H, Zhao H, Wang X (2023) An experimental study on the influence of waste rubber particles on the compressive, flexural and impact properties of 3D printable sustainable cementitious composites. Case Stud Constr Mater 19:e02607

    Google Scholar 

Download references