modulating-and-imaging-macrophage-reprogramming-for-cancer-immunotherapy-|-phenomics-–-springer

Modulating and Imaging Macrophage Reprogramming for Cancer Immunotherapy | Phenomics – Springer

  • Ackermann M, Rafiei Hashtchin A, Manstein F et al (2022) Continuous human iPSC-macrophage mass production by suspension culture in stirred tank bioreactors. Nat Protoc 17(2):513–539. https://doi.org/10.1038/s41596-021-00654-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attwood MM, Jonsson J, Rask-Andersen M et al (2020) Soluble ligands as drug targets. Nat Rev Drug Discov 19(10):695–710. https://doi.org/10.1038/s41573-020-0078-4

    Article  CAS  PubMed  Google Scholar 

  • Bied M, Ho WW, Ginhoux F et al (2023) Roles of macrophages in tumor development: a spatiotemporal perspective. Cell Mol Immunol 20:983–992. https://doi.org/10.1038/s41423-023-01061-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X, Chen J, Li B et al (2022) Promoting antibody-dependent cellular phagocytosis for effective macrophage-based cancer immunotherapy. Sci Adv 8(11):eabl9171. https://doi.org/10.1126/sciadv.abl9171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassetta L, Pollard JW (2023) A timeline of tumour-associated macrophage biology. Nat Rev Cancer 23(4):238–257. https://doi.org/10.1038/s41568-022-00547-1

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Saeed AF, Liu Q et al (2023) Macrophages in immunoregulation and therapeutics. Sig Transduct Target Ther 8(1):207. https://doi.org/10.1038/s41392-023-01452-1

    Article  Google Scholar 

  • Cheng K, Cai N, Zhu J et al (2022) Tumor-associated macrophages in liver cancer: from mechanisms to therapy. Cancer Commun 42(11):1112–1140. https://doi.org/10.1002/cac2.12345

    Article  Google Scholar 

  • Childs-Disney JL, Yang X, Gibaut QMR et al (2022) Targeting RNA structures with small molecules. Nat Rev Drug Discov 21(10):736–762. https://doi.org/10.1038/s41573-022-00521-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho H, Kwon H-Y, Sharma A et al (2022) Visualizing inflammation with an M1 macrophage selective probe via GLUT1 as the gating target. Nat Commun 13(1):5974. https://doi.org/10.1038/s41467-022-33526-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi Y-K, Kim J-J, Chang Y-T (2019) Holding-oriented versus gating-oriented live-cell distinction: highlighting the role of transporters in cell imaging probe development. Acc Chem Res 52(11):3097–3107. https://doi.org/10.1021/acs.accounts.9b00253

    Article  CAS  PubMed  Google Scholar 

  • Christofides A, Strauss L, Yeo A et al (2022) The complex role of tumor-infiltrating macrophages. Nat Immunol 23(8):1148–1156. https://doi.org/10.1038/s41590-022-01267-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Oliveira S, Houseright RA, Graves AL et al (2019) Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. J Hepatol 70(4):710–721. https://doi.org/10.1016/j.jhep.2018.11.034

    Article  CAS  PubMed  Google Scholar 

  • Deguchi J-o, Aikawa M, Tung C-H et al (2006) Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 114(1):55–62. https://doi.org/10.1161/CIRCULATIONAHA.106.619056

    Article  PubMed  Google Scholar 

  • Deng DQ, Dai BL, Wei JS et al (2021) A drawer-type abdominal window with an acrylic/resin coverslip enables long-term intravital fluorescence/photoacoustic imaging of the liver. Nanophotonics 10(12):3369–3381. https://doi.org/10.1515/nanoph-2021-0281

    Article  CAS  Google Scholar 

  • Dickinson BC, Huynh C, Chang CJ (2010) A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J Am Chem Soc 132(16):5906–5915. https://doi.org/10.1021/ja1014103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding C, Shrestha R, Zhu X et al (2023) Inducing trained immunity in pro-metastatic macrophages to control tumor metastasis. Nat Immunol 24(2):239–254. https://doi.org/10.1038/s41590-022-01388-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolatkhah R, Somi MH, Jafarabadi MA et al (2020) Breast cancer survival and incidence: 10 years cancer registry data in the Northwest, Iran. Int J Breast Cancer 2020:6. https://doi.org/10.1155/2020/1963814

    Article  Google Scholar 

  • Duan Z, Luo Y (2021) Targeting macrophages in cancer immunotherapy. Sig Transduct Target Ther 6(1):127. https://doi.org/10.1038/s41392-021-00506-6

    Article  CAS  Google Scholar 

  • Entenberg D, Oktay MH, Condeelis JS (2023) Intravital imaging to study cancer progression and metastasis. Nat Rev Cancer 23(1):25–42. https://doi.org/10.1038/s41568-022-00527-5

    Article  CAS  PubMed  Google Scholar 

  • Fu P, Cao W, Chen T et al (2023) Super-resolution imaging of non-fluorescent molecules by photothermal relaxation localization microscopy. Nat Photon 17(4):330–337. https://doi.org/10.1038/s41566-022-01143-3

    Article  CAS  Google Scholar 

  • Fujiwara T, Yakoub MA, Chandler A et al (2021) CSF1/CSF1R signaling inhibitor pexidartinib (PLX3397) reprograms tumor-associated macrophages and stimulates t-cell infiltration in the sarcoma microenvironment. Mol Cancer Ther 20(8):1388–1399. https://doi.org/10.1158/1535-7163.MCT-20-0591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gharavi AT, Hanjani NA, Movahed E et al (2022) The role of macrophage subtypes and exosomes in immunomodulation. Cell Mol Biol Lett 27(1):83. https://doi.org/10.1186/s11658-022-00384-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaquinto AN, Miller KD, Tossas KY et al (2022) Cancer statistics for African American/black people 2022. CA Cancer J Clin 72(3):202–229. https://doi.org/10.3322/caac.21718

    Article  PubMed  Google Scholar 

  • Gupta A, Andresen JL, Manan RS et al (2021) Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev 178:113834. https://doi.org/10.1016/j.addr.2021.113834

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Li WQ, Chen SM et al (2023) Design of a novel chimeric peptide via dual blockade of CD47/SIRP alpha and PD-1/PD-L1 for cancer immunotherapy. Sci China Life Sci 66:2310–2328. https://doi.org/10.1007/s11427-022-2285-6

    Article  CAS  PubMed  Google Scholar 

  • Hurt RC, Buss MT, Duan M et al (2023) Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing bacteria. Nat Biotechnol 41:919–931. https://doi.org/10.1038/s41587-022-01581-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang S, Chan CN, Rovira-Clavé X et al (2022) Combined protein and nucleic acid imaging reveals virus-dependent B cell and macrophage immunosuppression of tissue microenvironments. Immunity 55(6):1118–1134. https://doi.org/10.1016/j.immuni.2022.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamber RA, Nishiga Y, Morton B et al (2021) Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis. Nature 597(7877):549–554. https://doi.org/10.1038/s41586-021-03879-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang N-Y, Park S-J, Ang XWE et al (2014) A macrophage uptaking near-infrared chemical probe CDnir7 for in vivo imaging of inflammation. Chem Commun 50(50):6589–6591. https://doi.org/10.1039/c4cc02038c

    Article  CAS  Google Scholar 

  • Kang M, Lee SH, Kwon M et al (2021) Nanocomplex-mediated in vivo programming to chimeric antigen receptor-M1 macrophages for cancer therapy. Adv Mater 33(43):2103258. https://doi.org/10.1002/adma.202103258

    Article  CAS  Google Scholar 

  • Klichinsky M, Ruella M, Shestova O et al (2020) Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol 38(8):947–953. https://doi.org/10.1038/s41587-020-0462-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosti CN, Vaitsi PC, Pappas AG et al (2022) CSF1/CSF1R signaling mediates malignant pleural effusion formation. JCI Insight 7(6):e155300. https://doi.org/10.1172/jci.insight.155300

    Article  PubMed  PubMed Central  Google Scholar 

  • Kröger M, Scheffel J, Shirshin EA et al (2022) Label-free imaging of M1 and M2 macrophage phenotypes in the human dermis in vivo using two-photon excited FLIM. Elife 11:e72819. https://doi.org/10.7554/eLife.72819

    Article  PubMed  PubMed Central  Google Scholar 

  • La Fleur L, Botling J, He F et al (2021) Targeting MARCO and IL37R on immunosuppressive macrophages in lung cancer blocks regulatory T cells and supports cytotoxic lymphocyte function. Cancer Res 81(4):956–967. https://doi.org/10.1158/0008-5472.CAN-20-1885

    Article  CAS  PubMed  Google Scholar 

  • Lauterbach MA, Hanke JE, Serefidou M et al (2019) Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity 51(6):997–1011. https://doi.org/10.1016/j.immuni.2019.11.009

    Article  CAS  PubMed  Google Scholar 

  • Lee M-S, Bensinger SJ (2022) Reprogramming cholesterol metabolism in macrophages and its role in host defense against cholesterol-dependent cytolysins. Cell Mol Immunol 19(3):327–336. https://doi.org/10.1038/s41423-021-00827-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerner EC, Woroniecka KI, D’Anniballe VM et al (2023) CD8+ T cells maintain killing of MHC-I-negative tumor cells through the NKG2D-NKG2DL axis. Nat Cancer 4:1258–1127. https://doi.org/10.1038/s43018-023-00600-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Yao W, Yuan Y et al (2017) Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut 66(1):157–167. https://doi.org/10.1136/gutjnl-2015-310514

    Article  CAS  PubMed  Google Scholar 

  • Li C, Hu W, Wang J et al (2020a) A highly specific probe for the imaging of inflammation-induced endogenous nitric oxide produced during the stroke process. Analyst 145(18):6125–6129. https://doi.org/10.1039/D0AN00824A

    Article  CAS  PubMed  Google Scholar 

  • Li Y, He Y, Miao K et al (2020b) Imaging of macrophage mitochondria dynamics in vivo reveals cellular activation phenotype for diagnosis. Theranostics 10(7):2897. https://doi.org/10.7150/thno.40495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Dai H, Wang H et al (2021a) Exploring innate immunity in cancer immunotherapy: opportunities and challenges. Cell Mol Immunol 18(6):1607–1609. https://doi.org/10.1038/s41423-021-00679-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Su X, Liu R et al (2021b) HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression. Oncogene 40(10):1836–1850. https://doi.org/10.1038/s41388-020-01636-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Feng Y, Zheng X et al (2022) M2-type exosomes nanoparticles for rheumatoid arthritis therapy via macrophage re-polarization. J Control Release 341:16–30. https://doi.org/10.1016/j.jconrel.2021.11.019

    Article  CAS  PubMed  Google Scholar 

  • Liang M, Liu Z, Zhang Z et al (2022) A two-photon ratiometric fluorescent probe for real-time imaging and quantification of NO in neural stem cells during activation regulation. Chem Sci 13(15):4303–4312. https://doi.org/10.1039/D2SC00326K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L, Wang LV (2022) The emerging role of photoacoustic imaging in clinical oncology. Nat Rev Clin Oncol 19(6):365–384. https://doi.org/10.1038/s41571-022-00615-3

    Article  PubMed  Google Scholar 

  • Lin Q, Deng D, Song X et al (2019) Self-assembled “Off/On” nanopomegranate for in vivo photoacoustic and fluorescence imaging: strategic arrangement of Kupffer cells in mouse hepatic lobules. ACS Nano 13(2):1526–1537. https://doi.org/10.1021/acsnano.8b07283

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Cheng J, Mu W et al (2021) Advances in universal CAR-T cell therapy. Front Immunol 12:744823. https://doi.org/10.3389/fimmu.2021.744823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin M, Yang Z, Yang Y et al (2022) CRISPR-based in situ engineering tumor cells to reprogram macrophages for effective cancer immunotherapy. Nano Today 42:101359. https://doi.org/10.1016/j.nantod.2021.101359

    Article  CAS  Google Scholar 

  • Liu P-S, Chen Y-T, Li X et al (2023) CD40 signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions. Nat Immunol 24(3):452–462. https://doi.org/10.1038/s41590-023-01430-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loke P, Lin JD (2022) Redefining inflammatory macrophage phenotypes across stages and tissues by single-cell transcriptomics. Sci Immunol 7(70):eabo4652. https://doi.org/10.1126/sciimmunol.abo4652

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Jiang G (2022) The journey of CAR-T therapy in hematological malignancies. Mol Cancer 21(1):1–15. https://doi.org/10.1186/s12943-022-01663-0

    Article  Google Scholar 

  • Lung TWF, Charytonowicz D, Beaumont KG et al (2022) Klebsiella pneumoniae induces host metabolic stress that promotes tolerance to pulmonary infection. Cell Metab 34(5):761-774.e769. https://doi.org/10.1016/j.cmet.2022.03.009

    Article  CAS  Google Scholar 

  • Ma C, He D, Tian P et al (2022a) miR-182 targeting reprograms tumor-associated macrophages and limits breast cancer progression. Proc Natl Acad Sci USA 119(6):e2114006119. https://doi.org/10.1073/pnas.2114006119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma RY, Black A, Qian BZ (2022b) Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol 43(7):546–563. https://doi.org/10.1016/j.it.2022.04.008

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Sun B, Duan S et al (2023) YTHDF2 orchestrates tumor-associated macrophage reprogramming and controls antitumor immunity through CD8+ T cells. Nat Immunol 24(2):255–266. https://doi.org/10.1038/s41590-022-01398-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mass E, Nimmerjahn F, Kierdorf K et al (2023) Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol. https://doi.org/10.1038/s41577-023-00848-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta AK, Cheney EM, Hartl CA et al (2021) Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nat Cancer 2(1):66–82. https://doi.org/10.1038/s43018-020-00148-7

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay M (2020) Macrophages enter CAR immunotherapy. Nat Methods 17(6):561–561. https://doi.org/10.1038/s41592-020-0862-4

    Article  CAS  PubMed  Google Scholar 

  • Nishida-Aoki N, Gujral TS (2022) Polypharmacologic reprogramming of tumor-associated macrophages toward an inflammatory phenotype. Cancer Res 82(3):433–446. https://doi.org/10.1158/0008-5472.CAN-21-1428

    Article  CAS  PubMed  Google Scholar 

  • Noonepalle SKR, Hernandez MG, Delgado CZ et al (2023) Reprogramming macrophages with HDAC6 inhibitors for anti-cancer macrophage-based cell therapy. Cancer Res 83(7):900–900. https://doi.org/10.1158/1538-7445.AM2023-900

    Article  Google Scholar 

  • Ohshiro K, Bhowmick K, Yang X et al (2023) PKM2 Modulates hepatic macrophage regulation of NASH, ferroptosis and HCC through TGF-β signaling. Cancer Res 83(7):4854–4854. https://doi.org/10.1158/1538-7445.AM2023-4854

    Article  Google Scholar 

  • Pahlevaninezhad M, Huang Y-W, Pahlevani M et al (2022) Metasurface-based bijective illumination collection imaging provides high-resolution tomography in three dimensions. Nat Photon 16(3):203–211. https://doi.org/10.1038/s41566-022-00956-6

    Article  CAS  Google Scholar 

  • Pan H, Gray R, Braybrooke J et al (2017) 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med 377(19):1836–1846. https://doi.org/10.1056/NEJMoa1701830

    Article  PubMed  PubMed Central  Google Scholar 

  • Park S-J, Kim B, Choi S et al (2019) Imaging inflammation using an activated macrophage probe with Slc18b1 as the activation-selective gating target. Nat Commun 10(1):1111. https://doi.org/10.1038/s41467-019-08990-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavillon N, Hobro AJ, Akira S et al (2018) Noninvasive detection of macrophage activation with single-cell resolution through machine learning. Proc Natl Acad Sci USA 115(12):E2676–E2685. https://doi.org/10.1073/pnas.1711872115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierini S, Gabbasov R, Worth A et al (2022) Chimeric antigen receptor macrophages (CAR-M) sensitize solid tumors to anti-PD1 immunotherapy. Cancer Res 82(12):2112–2112. https://doi.org/10.1158/1538-7445.AM2022-2112

    Article  Google Scholar 

  • Qian Y, Qiao S, Dai YF et al (2017) Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano 11(9):9536–9549. https://doi.org/10.1021/acsnano.7b05465

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Galan-Cobo A, Guijarro I et al (2023) MCT4-dependent lactate secretion suppresses antitumor immunity in LKB1-deficient lung adenocarcinoma. Cancer Cell 41(7):1363–1380. https://doi.org/10.1016/j.ccell.2023.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos RN, Missolo-Koussou Y, Gerber-Ferder Y et al (2022) Tissue-resident FOLR2+ macrophages associate with CD8+ T cell infiltration in human breast cancer. Cell 185(7):1189–1207. https://doi.org/10.1016/j.cell.2022.02.021

    Article  CAS  Google Scholar 

  • Revel M, Sautès-Fridman C, Fridman W-H et al (2022) C1q+ macrophages: passengers or drivers of cancer progression. Trends Cancer 8(7):517–526. https://doi.org/10.1016/j.trecan.2022.02.006

    Article  CAS  PubMed  Google Scholar 

  • Rowe SP, Pomper MG (2022) Molecular imaging in oncology: current impact and future directions. CA Cancer J Clin 72(4):333–352. https://doi.org/10.3322/caac.21713

    Article  PubMed  Google Scholar 

  • Shi L, Wei M, Miao Y et al (2022) Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. Nat Biotechnol 40(3):364–373. https://doi.org/10.1038/s41587-021-01041-z

    Article  CAS  PubMed  Google Scholar 

  • Siegel R, Miller K, Fuchs H et al (2021) Cancer statistics, 2021. CA Cancer J Clin 71(4):359–359. https://doi.org/10.3322/caac.21654

    Article  Google Scholar 

  • Song H, Yang Y, Sun Y et al (2022) Circular RNA Cdyl promotes abdominal aortic aneurysm formation by inducing M1 macrophage polarization and M1-type inflammation. Mol Ther 30(2):915–931. https://doi.org/10.1016/j.ymthe.2021.09.017

    Article  CAS  PubMed  Google Scholar 

  • Strack R (2023) Capturing hyperspectral images. Nat Methods 20(6):783–783. https://doi.org/10.1038/s41592-023-01921-z

    Article  CAS  PubMed  Google Scholar 

  • Su W-P, Chang L-C, Song W-H et al (2022) Polyaniline-based glyco-condensation on Au nanoparticles enhances immunotherapy in lung cancer. ACS Appl Mater Interfaces 14(21):24144–24159. https://doi.org/10.1021/acsami.2c03839

    Article  CAS  PubMed  Google Scholar 

  • Sullivan RJ, Hong DS, Tolcher AW et al (2018) Initial results from first-in-human study of IPI-549, a tumor macrophage-targeting agent, combined with nivolumab in advanced solid tumors. J Clin Oncol 36(15):3013–3013. https://doi.org/10.1200/JCO.2018.36.15_suppl.3013

    Article  Google Scholar 

  • Sun L, Zhang H, Gao P (2022) Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell 13(12):877–919. https://doi.org/10.1007/s13238-021-00846-7

    Article  CAS  PubMed  Google Scholar 

  • Thorsson V, Gibbs DL, Brown SD et al (2019) The immune landscape of cancer. Immunity 51(2):411–412. https://doi.org/10.1016/j.immuni.2018.03.023

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Romero A, Kielland N, Arevalo MJ et al (2013) Multicomponent reactions for de novo synthesis of BODIPY probes: in vivo imaging of phagocytic macrophages. J Am Chem Soc 135(43):16018–16021. https://doi.org/10.1021/ja408093p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang M, Wu HX et al (2021) Advancing to the era of cancer immunotherapy. Cancer Commun 41(9):803–829. https://doi.org/10.1002/cac2.12178

    Article  Google Scholar 

  • Wang T, Lin M, Mao J et al (2022) Inflammation-regulated nanodrug sensitizes hepatocellular carcinoma to checkpoint blockade therapy by reprogramming the tumor microenvironment. ACS Appl Mater Interfaces 14(44):49542–49554. https://doi.org/10.1021/acsami.2c14448

    Article  CAS  Google Scholar 

  • Wang J, Peng X, Wei J et al (2023) In situ phagocyte-mediated deep tumor penetration assisted by ApoA-1 mimetic peptide-modified silicasome. Nano Today 50:101864. https://doi.org/10.1016/j.nantod.2023.101864

    Article  CAS  Google Scholar 

  • Xue R, Zhang Q, Cao Q et al (2022) Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 612(7938):141–147. https://doi.org/10.1038/s41586-022-05400-x

    Article  CAS  PubMed  Google Scholar 

  • Yang L-Z, Wang Y, Li S-Q et al (2019) Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol Cell 76(6):981–997. https://doi.org/10.1016/j.molcel.2019.10.024

    Article  CAS  PubMed  Google Scholar 

  • Yu JE, Yeo IJ, Son DJ et al (2022) Anti-Chi3L1 antibody suppresses lung tumor growth and metastasis through inhibition of M2 polarization. Mol Oncol 16(11):2214–2234. https://doi.org/10.1002/1878-0261.13152

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Yu X, Gao L et al (2017) Noninvasive imaging of CD206-positive M2 macrophages as an early biomarker for post-chemotherapy tumor relapse and lymph node metastasis. Theranostics 7(17):4276. https://doi.org/10.7150/thno.20999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Du X, Liu M et al (2019) Hijacking antibody-induced CTLA-4 lysosomal degradation for safer and more effective cancer immunotherapy. Cell Res 29(8):609–627. https://doi.org/10.1038/s41422-019-0184-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Pan X, Fujiwara K et al (2021a) Pancreatic cancer cells render tumor-associated macrophages metabolically reprogrammed by a GARP and DNA methylation-mediated mechanism. Sig Transduct Target Ther 6(1):366. https://doi.org/10.1038/s41392-021-00769-z

    Article  CAS  Google Scholar 

  • Zhang Y, Chen H, Mo H et al (2021b) Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 39(12):1578–1593. https://doi.org/10.1016/j.ccell.2021.09.010

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Ji L, Li MO (2023) Control of tumor-associated macrophage responses by nutrient acquisition and metabolism. Immunity 56(1):14–31. https://doi.org/10.1016/j.immuni.2022.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Huang Z, Ma D et al (2021) A nucleus targetable fluorescent probe for ratiometric imaging of endogenous NO in living cells and zebrafishes. Analyst 146(13):4130–4134. https://doi.org/10.1039/D1AN00426C

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Ming T, Tang S et al (2022) Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer 21(1):144. https://doi.org/10.1186/s12943-022-01616-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Wang J, Xu J et al (2020) A smart fluorescent probe for NO detection and application in myocardial fibrosis imaging. Anal Chem 92(7):5064–5072. https://doi.org/10.1021/acs.analchem.9b05435

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Liang J, Yang T et al (2022) Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer. EMBO Mol Med 14(1):e14502. https://doi.org/10.15252/emmm.202114502

    Article  CAS  PubMed  Google Scholar 

  • Zou Y, Sun X, Yang Q et al (2022) Blood-brain barrier–penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Sci Adv 8(16):eabm8011. https://doi.org/10.1126/sciadv.abm8011

    Article  CAS  PubMed  PubMed Central  Google Scholar