nanocomposite-for-enhanced-antibacterial-effect-and-efficient-photocatalytic-for-dye-degradation-–-springer

Nanocomposite for Enhanced Antibacterial Effect and Efficient Photocatalytic for Dye Degradation – Springer

References

  1. X. Wang, J. Jia, Y. Wang, Enhanced photocatalytic–electrolytic degradation of Reactive Brilliant Red X-3B in the presence of water jet cavitation. Ultrason. Sonochem. 23, 93–99 (2015). https://doi.org/10.1016/j.ultsonch.2014.10.005

    Article  Google Scholar 

  2. S. Adishkumar, S. Kanmani, J. Rajesh Banu, Solar photocatalytic treatment of phenolic wastewaters: influence of chlorides, sulphates, aeration, liquid volume and solar light intensity. Desalin. Water Treat. 52(40–42), 7957–7963 (2014). https://doi.org/10.1080/19443994.2013.834522

    Article  Google Scholar 

  3. C. Guo, S. Yin, Y. Huang, Q. Dong, T. Sato, Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties. Langmuir 27(19), 12172–12178 (2011). https://doi.org/10.1021/la202513q

    Article  Google Scholar 

  4. A. Brown, S. Müller, Z. Dobrotková, Renewable energy-markets and prospects by technology. Report Int. Energy Agency 1–62. This paper complements the International Energy Agency’s 2011 report, Deploying Renewables 2011: Best and Future Policy Practice. http://www.iea.org/w/bookshop/add.aspx?id=414

  5. A. Hsu, C. Rosengarten, A. Weinfurter, Y. Xie, E. Musolino, H.E. Murdock, Renewable energy and energy efficiency in developing countries: contributions to reducing global emissions-third report. (2017). https://www.unep.org/resources/report/renewable-energy-and-energy-efficiency-developing-countries-contributions-0

  6. O. Sacco, V. Vaiano, C. Han, D. Sannino, D.D. Dionysiou, Photocatalytic removal of atrazine using N-doped TiO2 supported on phosphors. Appl. Catal. B 164, 462–474 (2015). https://doi.org/10.1016/j.apcatb.2014.09.062

    Article  Google Scholar 

  7. A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995). https://doi.org/10.1021/cr00035a013

    Article  Google Scholar 

  8. S.W. da Silva, C.R. Klauck, M.A. Siqueira, A.M. Bernardes, Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes. J. Hazard. Mater. 282, 241–248 (2015). https://doi.org/10.1016/j.jhazmat.2014.08.014

    Article  Google Scholar 

  9. N. Wang, Y. Xu, L. Zhu, X. Shen, H. Tang, Reconsideration to the deactivation of TiO2 catalyst during simultaneous photocatalytic reduction of Cr (VI) and oxidation of salicylic acid. J. Photochem. Photobiol. A 201(2–3), 121–127 (2009). https://doi.org/10.1016/j.jphotochem.2008.10.002

    Article  Google Scholar 

  10. H. Xu, F. Wu, M. Li, Z. Liang, Application of response surface methodology for optimization of nano-TiO2 preparation using modified sol–gel method. J. Sol-Gel Sci. Technol. 67, 394–405 (2013). https://doi.org/10.1007/s10971-013-3093-7

    Article  Google Scholar 

  11. J.Y. Ahn, H.K. Cheon, W.D. Kim, Y.J. Kang, J.M. Kim, D.W. Lee, S.H. Kim, Aero-sol–gel synthesis and photovoltaic properties of mesoporous TiO2 nanoparticles. Chem. Eng. J. 188, 216–221 (2012). https://doi.org/10.1016/j.cej.2012.02.007

    Article  Google Scholar 

  12. P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396(6707), 152–155 (1998). https://doi.org/10.1038/24132

    Article  ADS  Google Scholar 

  13. H. Choi, E. Stathatos, D.D. Dionysiou, Synthesis of nanocrystalline photocatalytic TiO2 thin films and particles using sol–gel method modified with nonionic surfactants. Thin Solid Films 510(1–2), 107–114 (2006). https://doi.org/10.1016/j.tsf.2005.12.217

    Article  ADS  Google Scholar 

  14. M.A. Zanjanchi, A. Ebrahimian, M. Arvand, Sulphonated cobalt phthalocyanine–MCM-41: an active photocatalyst for degradation of 2, 4-dichlorophenol. J. Hazard. Mater. 175(1–3), 992–1000 (2010). https://doi.org/10.1016/j.jhazmat.2009.10.108

    Article  Google Scholar 

  15. V. Iliev, D. Tomova, L. Bilyarska, L. Prahov, L. Petrov, Phthalocyanine modified TiO2 or WO3-catalysts for photooxidation of sulfide and thiosulfate ions upon irradiation with visible light. J. Photochem. Photobiol. A 159(3), 281–287 (2003). https://doi.org/10.1016/S1010-6030(03)00170-9

    Article  Google Scholar 

  16. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114(19), 9919–9986 (2014). https://doi.org/10.1021/cr5001892

    Article  Google Scholar 

  17. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018), 746–750 (2011). https://doi.org/10.1126/science.1200448

    Article  ADS  Google Scholar 

  18. H. Li, W. Zhang, D. Liu, W. Li, Template-directed synthesis of mesoporous TiO2 materials for energy conversion and storage. Emerg. Mater. 3, 315–329 (2020). https://doi.org/10.1007/s42247-020-00091-4

    Article  Google Scholar 

  19. M.M. Momeni, M. Taghinejad, Y. Ghayeb, R. Bagheri, Z. Song, Preparation of various boron-doped TiO2 nanostructures by in situ anodizing method and investigation of their photoelectrochemical and photocathodic protection properties. J. Iran. Chem. Soc. 16, 1839–1851 (2019). https://doi.org/10.1007/s13738-019-01658-7

    Article  Google Scholar 

  20. R. Kamble, S. Sabale, P. Chikode, V. Puri, X.Y. Yu, S. Mahajan, Studies on the Fe3+ doping effect on structural, optical and catalytic properties of hydrothermally synthesized TiO2 photocatalyst. Nanosci. Nanotechnol. Asia 7(2), 230–242 (2017). https://doi.org/10.2174/2210681207666161227160317

    Article  Google Scholar 

  21. N.R. Khalid, Z. Hong, E. Ahmed, Y. Zhang, H. Chan, M. Ahmad, Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light. Appl. Surf. Sci. 258(15), 5827–5834 (2012). https://doi.org/10.1016/j.apsusc.2012.02.110

    Article  ADS  Google Scholar 

  22. M. Hamadanian, A. Reisi-Vanani, A. Majedi, Sol-gel preparation and characterization of Co/TiO2 nanoparticles: application to the degradation of methyl orange. J. Iran. Chem. Soc. 7, S52–S58 (2010). https://doi.org/10.1007/BF03246184

    Article  Google Scholar 

  23. S.R. Sabale, R. Kamble, P. Chikode, V. Puri, S. Mahajan, Structural characterization and photocatalytic properties of hydrothermally synthesized Ni2+-TiO2 nanoparticles for dye degradation under direct sunlight. Indian J. Chem. Sect. A (IJCA) 56(5), 479–487 (2020). https://doi.org/10.56042/ijca.v56i5.15495

    Article  Google Scholar 

  24. S. Naseem, W. Khan, S. Khan, I. Uddin, W. Raza, M. Shoeb, A.H. Naqvi, Enhanced photocatalytic activity by tuning of structural and optoelectrical properties of Cr (III) incorporated TiO2 nanoparticles. J. Electron. Mater. 48, 7203–7215 (2019). https://doi.org/10.1007/s11664-019-07499-7

    Article  ADS  Google Scholar 

  25. M.B. Marami, M. Farahmandjou, B. Khoshnevisan, Sol–gel synthesis of Fe-doped TiO2 nanocrystals. J. Electron. Mater. 47, 3741–3748 (2018). https://doi.org/10.1007/s11664-018-6234-5

    Article  ADS  Google Scholar 

  26. V. Mirkhani, S. Tangestaninejad, M. Moghadam, M.H. Habibi, A.R. Vartooni, Photodegradation of aromatic amines by Ag-TiO2 photocatalyst. J. Iran. Chem. Soc. 6, 800–807 (2009). https://doi.org/10.1007/BF03246172

    Article  Google Scholar 

  27. V. Mirkhani, S. Tangestaninejad, M. Moghadam, M.H. Habibi, A. Rostami-Vartooni, Photocatalytic degradation of azo dyes catalyzed by Ag doped TiO2 photocatalyst. J. Iran. Chem. Soc. 6, 578–587 (2009). https://doi.org/10.1007/BF03246537

    Article  Google Scholar 

  28. N. Zhang, S. Liu, X. Fu, Y.J. Xu, Synthesis of M@ TiO2 (M= Au, Pd, Pt) core–shell nanocomposites with tunable photoreactivity. J. Phys. Chem. C 115(18), 9136–9145 (2011). https://doi.org/10.1021/jp2009989

    Article  Google Scholar 

  29. E. Assayehegn, A. Solaiappan, Y. Chebudie, E. Alemayehu, Influence of temperature on preparing mesoporous mixed phase N/TiO2 nanocomposite with enhanced solar light photocatalytic activity. Front. Mater. Sci. 13, 352–366 (2019). https://doi.org/10.1007/s11706-019-0481-0

    Article  Google Scholar 

  30. J.H. Pan, G. Han, R. Zhou, X.S. Zhao, Hierarchical N-doped TiO2 hollow microspheres consisting of nanothorns with exposed anatase 101 facets. Chem. Commun. 47(24), 6942–6944 (2011). https://doi.org/10.1039/C1CC11796C

    Article  Google Scholar 

  31. B. Roose, S. Pathak, U. Steiner, Doping of TiO2 for sensitized solar cells. Chem. Soc. Rev. 44(22), 8326–8349 (2015). https://doi.org/10.1039/C5CS00352K

    Article  Google Scholar 

  32. M.C. Wu, T.H. Lin, S.H. Chan, Y.H. Liao, Y.H. Chang, Enhanced photovoltaic performance of perovskite solar cells by tuning alkaline earth metal-doped perovskite-structured absorber and metal-doped TiO2 hole blocking layer. ACS Appl. Energy Mater. 1(9), 4849–4859 (2018). https://doi.org/10.1021/acsaem.8b00915

    Article  Google Scholar 

  33. G. Sadanandam, K. Lalitha, V.D. Kumari, M.V. Shankar, M. Subrahmanyam, Cobalt doped TiO2: a stable and efficient photocatalyst for continuous hydrogen production from glycerol: water mixtures under solar light irradiation. Int. J. Hydrogen Energy 38(23), 9655–9664 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.116

    Article  ADS  Google Scholar 

  34. J.K. Kim, S.U. Chai, Y. Ji, B. Levy-Wendt, S.H. Kim, Y. Yi, X. Zheng, Resolving hysteresis in perovskite solar cells with rapid flame-processed cobalt-doped TiO2. Ad. Energy Mater. 8(29), 1801717 (2018). https://doi.org/10.1002/aenm.201801717

    Article  Google Scholar 

  35. C.C. Chueh, C.I. Chen, Y.A. Su, H. Konnerth, Y.J. Gu, C.W. Kung, K.C.W. Wu, Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. J. Mater. Chem. A 7(29), 17079–17095 (2019). https://doi.org/10.1039/C9TA03595H

    Article  Google Scholar 

  36. I. Neme, G. Gonfa, C. Masi, Activated carbon from biomass precursors using phosphoric acid: a review. Heliyon 8, e11940 (2022). https://doi.org/10.1016/j.heliyon.2022.e11940

    Article  Google Scholar 

  37. R. Naveenkumar, B. Karthikeyan, S. Senthilvelan, Synthesis of bioinspired lotus fiber infused PVA/TiO2 nanocomposites: characterization, thermal, and photocatalytic activity studies. Biomass Convers. Bior. (2023). https://doi.org/10.1007/s13399-023-05231-4

    Article  Google Scholar 

  38. T.M.H. Nguyen, C.W. Bark, Synthesis of cobalt-doped TiO2 based on metal–organic frameworks as an effective electron transport material in perovskite solar cells. ACS Omega 5(5), 2280–2286 (2020). https://doi.org/10.1021/acsomega.9b03507

    Article  Google Scholar 

  39. M. Ali, R. Hussain, F. Tariq, Z. Noreen, A.M. Toufiq, H. Bokhari, S.U. Rahman, Highly effective visible light-activated cobalt-doped TiO2 nanoparticles for antibacterial coatings against Campylobacter jejuni. Appl. Nanosci. 10, 1005–1012 (2020). https://doi.org/10.1007/s13204-019-01193-0

    Article  ADS  Google Scholar 

  40. A. El Mragui, O. Zegaoui, J.C.E. da Silva, Elucidation of the photocatalytic degradation mechanism of an azo dye under visible light in the presence of cobalt doped TiO2 nanomaterials. Chemosphere 266, 128931 (2021). https://doi.org/10.1016/j.chemosphere.2020.128931

    Article  Google Scholar 

  41. S.N. Hoseini, A.K. Pirzaman, M.A. Aroon, A.E. Pirbazari, Photocatalytic degradation of 2, 4-dichlorophenol by Co-doped TiO2 (Co/TiO2) nanoparticles and Co/TiO22 containing mixed matrix membranes. J. Water Process Eng. 17, 124–134 (2017). https://doi.org/10.1016/j.jwpe.2017.02.015

    Article  Google Scholar 

  42. F.Z. Haque, R. Nandanwar, P. Singh, Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds. Optik 128, 191–200 (2017). https://doi.org/10.1016/j.ijleo.2016.10.025

    Article  ADS  Google Scholar 

  43. C. Stella, D. Prabhakar, M. Prabhu, N. Soundararajan, K. Ramachandran, Oxygen vacancies induced room temperature ferromagnetism and gas sensing properties of Co-doped TiO2 nanoparticles. J. Mater. Sci. Mater. Electron. 27, 1636–1644 (2016). https://doi.org/10.1007/s10854-015-3935-x

    Article  Google Scholar 

  44. S. Mugundan, B. Rajamannan, G. Viruthagiri, N. Shanmugam, R. Gobi, P. Praveen, Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique. Appl. Nanosci. 5, 449–456 (2015). https://doi.org/10.1007/s13204-014-0337-y

    Article  ADS  Google Scholar 

  45. X. Zhang, H. Fan, P. Li, Z. Zhang, Y. Wu, L. Chen, … G. Yi, Cobalt doped TiO2/rGO nanocomposites as highly efficient photocatalyst for water purification. Biomed. J. Sci. Tech. Res. 37(2), 29249–29257 (2021). https://biomedres.us/fulltexts/BJSTR.MS.ID.005972.php

    Google Scholar 

  46. R.J. Kamble, P.V. Gaikwad, K.M. Garadkar, S.R. Sabale, V.R. Puri, S.S. Mahajan, Photocatalytic degradation of malachite green using hydrothermally synthesized cobalt-doped TiO2 nanoparticles. J. Iran. Chem. Soc. 19(1), 303–312 (2022). https://doi.org/10.1007/s13738-021-02303-y

    Article  Google Scholar 

  47. D. Pan, J. Jiao, Z. Li, Y. Guo, C. Feng, Y. Liu, … M. Wu, Efficient separation of electron–hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustain. Chem. Eng. 3(10), 2405–2413 (2015). https://doi.org/10.1021/acssuschemeng.5b00771

    Article  Google Scholar 

  48. P. Prasannalakshmi, N. Shanmugam, Fabrication of TiO2/ZnO nanocomposites for solar energy driven photocatalysis. Mater. Sci. Semicond. Process. 61, 114–124 (2017). https://doi.org/10.1016/j.mssp.2017.01.008

    Article  Google Scholar 

  49. J. Chen, F. Qiu, W. Xu, S. Cao, H. Zhu, Recent progress in enhancing photocatalytic efficiency of TiO2-based materials. Appl. Catal. A 495, 131–140 (2015). https://doi.org/10.1016/j.apcata.2015.02.013

    Article  Google Scholar 

  50. H.E. Cheng, Y.R. Chen, W.T. Wu, C.M. Hsu, Effect of nitrogen doping concentration on the properties of TiO2 films grown by atomic layer deposition. Mater. Sci. Eng. B 176(7), 596–599 (2011). https://doi.org/10.1016/j.mseb.2011.02.001

    Article  Google Scholar 

  51. X. Cheng, X. Yu, B. Li, L. Yan, Z. Xing, J. Li, Enhanced visible light activity and mechanism of TiO2 codoped with molybdenum and nitrogen. Mater. Sci. Eng. B 178(7), 425–430 (2013). https://doi.org/10.1016/j.mseb.2013.01.009

    Article  Google Scholar 

  52. S. Yadav, G. Jaiswar, Review on undoped/doped TiO2 nanomaterial; synthesis and photocatalytic and antimicrobial activity. J. Chin. Chem. Soc. 64(1), 103–116 (2017). https://doi.org/10.1002/jccs.201600735

    Article  Google Scholar 

  53. A.N. El-Shazly, G.S. El-Sayyad, A.H. Hegazy, M.A. Hamza, R.M. Fathy, E.T. El Shenawy, N.K. Allam, Superior visible light antimicrobial performance of facet engineered cobalt doped TiO2 mesocrystals in pathogenic bacterium and fungi. Sci. Rep. 11(1), 5609 (2021). https://doi.org/10.1038/s41598-021-84989-x

    Article  ADS  Google Scholar 

  54. S. Moeen, M. Ikram, A. Haider, J. Haider, A. Ul-Hamid, W. Nabgan, I. Shahzadi, Comparative study of sonophotocatalytic, photocatalytic, and catalytic activities of magnesium and chitosan-doped tin oxide quantum dots. ACS Omega 7(50), 46428–46439 (2022). https://doi.org/10.1021/acsomega.2c05133

    Article  Google Scholar 

  55. F. Shaheen, M. Imran, A. Haider, A. Shahzadi, S. Moeen, A. Ul-Hamid, … M. Ikram, Size-controlled synthesis of La and chitosan doped cobalt selenide nanostructures for catalytic and antibacterial activity with molecular docking analysis. Int. J. Biological Macromol. (2024). https://doi.org/10.1016/j.ijbiomac.2024.130096

    Article  Google Scholar 

  56. S. Rani, M. Imran, A. Haider, A. Shahzadi, A. Ul-Hamid, H.H. Somaily, M. Ikram, Dye degradation, antimicrobial activity, and molecular docking analysis of samarium-grafted carbon nitride doped-bismuth oxobromide quantum dots. Global Challenges 7(12), 2300118 (2023). https://doi.org/10.1002/gch2.202300118

    Article  Google Scholar 

  57. M. Ikram, S. Moeen, A. Haider, A. Ul-Hamid, H. Alhummiany, H.H. Somaily, M.B. Kanoun, Experimental and computational study of annealed nickel sulfide quantum dots for catalytic and antibacterial activity. Nano Mater. Sci. (2023). https://doi.org/10.1016/j.nanoms.2023.11.007

    Article  Google Scholar 

  58. A. Hosseinnia, M. Keyanpour-Rad, M. Pazouki, Photo-catalytic degradation of organic dyes with different chromophores by synthesized nanosize TiO2 particles. World Appl. Sci. J. 8(11), 1327–1332 (2010)

    Google Scholar 

  59. J. Wang, L. Jing, L. Xue, Y. Qu, H. Fu, Enhanced activity of bismuth-compounded TiO2 nanoparticles for photocatalytically degrading rhodamine B solution. J. Hazard. Mater. 160(1), 208–212 (2008)

    Article  Google Scholar 

  60. M.H. Kahsay, Synthesis and characterization of ZnO nanoparticles using aqueous extract of Becium grandiflorum for antimicrobial activity and adsorption of methylene blue. Appl. Water Sci. 11(2), 45 (2021)

    Article  ADS  Google Scholar 

  61. G. Balakrishnan, R. Velavan, K.M. Batoo, E.H. Raslan, Microstructure, optical and photocatalytic properties of MgO nanoparticles. Res. Phys. 16, 103013 (2020)

    Google Scholar 

  62. M. Sukumar, L.J. Kennedy, J.J. Vijaya, B. Al-Najar, M. Bououdina, Structural, magnetic and catalytic properties of La2-xBaxCuO4 (0≤ x≤ 0.5) perovskite nanoparticles. Ceram. Int. 44(15), 18113–18122 (2018)

    Article  Google Scholar 

Download references