neural-network-design-for-data-driven-prediction-of-target-geometry-for-an-aerodynamic-inverse-design-algorithm-…-–-springer

Neural network design for data-driven prediction of target geometry for an aerodynamic inverse design algorithm … – Springer

References

  1. F. Chen and Z. Jin, Vortex effects on aerodynamic performance of multi-stage continuous-resistance trim under high pressure gradient, Aerospace Science and Technology, 142 (2023) 108614.

    Article  Google Scholar 

  2. E. Branlard, B. Jonkman, G. R. Pirrung, K. Dixon and J. Jonkman, Dynamic inflow and unsteady aerodynamics models for modal and stability analyses in OpenFAST, J. Phys.: Conf. Ser., 2265(3) (2022) 032044.

    Google Scholar 

  3. Y. Li, Q. Ma, E. Zhang and B. Bai, High-performance aerodynamic design of supercritical CO2 centrifugal compressor for the Megawatt-class nuclear microreactor (MSC-GFR), Nuclear Engineering and Design, 413 (2023) 112582.

    Article  Google Scholar 

  4. H. Sobieczky, New Design Concepts for High Speed Air Transport, Springer, Germany (2000).

    Google Scholar 

  5. Z. Hui, Y. Kong, W. Yao and G. Chen, Aircraft parameter estimation using a stacked long short-term memory network and levenberg-marquardt method, Chinese Journal of Aeronautics, 37 (3) (2023).

  6. X. Du, J. Ren and L. Leifsson, Aerodynamic inverse design using multifidelity models and manifold mapping, Aerospace Science and Technology, 85 (2019) 371–385.

    Article  Google Scholar 

  7. Q. Yang, Z. Zhang, S. Thomas, W. Georg and Y. Zheng, Aerodynamic design for three- dimensional multi- lifting surfaces at transonic flow, Chinese Journal of Aeronautics, 19(1) (2006) 24–30.

    Article  Google Scholar 

  8. Y. Zhu, Y. Ju and C. Zhang, An experience-independent inverse design optimization method of compressor cascade airfoil, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 233(4) (2019) 431–442.

    Google Scholar 

  9. C. Xue and Z. Zhou, Inverse aerodynamic design for DEP propeller based on desired propeller slipstream, Aerospace Science and Technology, 102 (2020) 105820.

    Article  Google Scholar 

  10. M. Ferlauto and R. Marsilio, A viscous inverse method for aerodynamic design, Computers & Fluids, 35(3) (2006) 304–325.

    Article  Google Scholar 

  11. M. Nili-Ahmadabadi, F. Aghabozorgi, D.-S. Cho and K. C. Kim, Development and validation of a hybrid aerodynamic design method for curved diffusers using genetic algorithm and ball-spine inverse design method, Alexandria Engineering Journal, 60(3) (2021) 3021–3036.

    Article  Google Scholar 

  12. M. Buddhiraju, S. Girish Sudarsanan and A. A. Mhaske, Optimum flap deflection for improved aircraft performance using surrogate modeling, Journal of Aircraft, 61 (1) (2024).

  13. Z. Song, X. Zheng, B. Wang, K. Zhou and R. Amankwa Adjei, Multidisciplinary robust optimization approach of fan rotors under structural constraints with blade curvature, Aerospace Science and Technology, 142 (2023) 108637.

    Article  Google Scholar 

  14. Y. Ju, Y. Liu, W. Jiang and C. Zhang, Aerodynamic analysis and design optimization of a centrifugal compressor impeller considering realistic manufacturing uncertainties, Aerospace Science and Technology, 115 (2021) 106787.

    Article  Google Scholar 

  15. S. Zhou, C. Li, Y. Xiao, X. Wang, W. Xiang and Q. Sun, Evaluation of floating wind turbine substructure designs by using long-term dynamic optimization, Applied Energy, 352 (2023) 121941.

    Article  Google Scholar 

  16. D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner and S. Hoyer, Machine learning-accelerated computational fluid dynamics, Proc. Natl. Acad. Sci., 118(21) (2021) e210178 4118.

    Article  MathSciNet  Google Scholar 

  17. A. Shirvani, M. Nili-Ahmadabadi and M. Y. Ha, Machine learning-accelerated aerodynamic inverse design, Engineering Applications of Computational Fluid Mechanics, 17(1) (2023) 2237611.

    Article  Google Scholar 

  18. H. Zhao, Z. Zhang, Y. Yang, J. Xiao and J. Chen, A dynamic monitoring method of temperature distribution for cable joints based on thermal knowledge and conditional generative adversarial network, IEEE Transactions on Instrumentation and Measurement, 72 (2023) 4507014.

    Article  Google Scholar 

  19. P. Werbos and P. John, Beyond regression: new tools for prediction and analysis in the behavioral sciences, Ph.D. Thesis, Havard University, USA (1974).

    Google Scholar 

  20. P. Jackson, Introduction to Expert Systems, 3rd ed., Addison-Wesley, Harlow, UK (1999).

    Google Scholar 

  21. S. Linnainmaa, Taylor expansion of the accumulated rounding error, BIT, 16(2) (1976) 146–160.

    Article  MathSciNet  Google Scholar 

  22. K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators, Neural Networks, 2(5) (1989) 359–366.

    Article  Google Scholar 

  23. S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Computation, 9(8) (1997) 1735–1780.

    Article  Google Scholar 

  24. P. Kumar, S. K. Sonkar, R. C. George, A. K. Ghosh and D. Philip, Estimation of aerodynamic parameters using neural artificial bee colony fusion algorithm for moderate angle of attack using real flight data, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 237(16) (2023) 3619–3639.

    Article  Google Scholar 

  25. A. J. Torregrosa, L. M. García-Cuevas, P. Quintero and A. Cremades, On the application of artificial neural network for the development of a nonlinear aeroelastic model, Aerospace Science and Technology, 115 (2021) 106845.

    Article  Google Scholar 

  26. M. Milano and P. Koumoutsakos, Neural network modeling for near wall turbulent flow, Journal of Computational Physics, 182(1) (2002) 1–26.

    Article  Google Scholar 

  27. S. Pierret and R. A. Van den Braembussche, Turbomachinery blade design using a navier-stokes solver and artificial neural network, Journal of Turbomachinery, 121(2) (1999) 326–332.

    Article  Google Scholar 

  28. W. E. Faller and S. J. Schreck, Neural networks: applications and opportunities in aeronautics, Progress in Aerospace Sciences, 32(5) (1996) 433–456.

    Article  Google Scholar 

  29. K. Jambunathan, S. L. Hartle, S. Ashforth-Frost and V. N. Fontama, Evaluating convective heat transfer coefficients using neural networks, International Journal of Heat and Mass Transfer, 39(11) (1996) 2329–2332.

    Article  Google Scholar 

  30. Z. J. Zhang and K. Duraisamy, Machine learning methods for data-driven turbulence modeling, 22nd AIAA Computational Fluid Dynamics Conference, Dallas, USA (2015).

  31. M. Safari, M. Nili-Ahmadabadi, A. Ghaei and E. Shirani, Inverse design in subsonic and transonic external flow regimes using elastic surface algorithm, Computers and Fluids, 102 (2014) 41–51.

    Article  MathSciNet  Google Scholar 

  32. S. F. Santos, N. Sebe and J. Almeida, CNNs for JPEGs: A study in computational cost, arXiv:2309.11417 (2023).

  33. Y. Bengio, A. Courville and P. Vincent, Representation learning: A review and new perspectives, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8) (2013) 1798–1828.

    Article  Google Scholar 

  34. A. Blumer, A. Ehrenfeucht, D. Haussler and M. K. Warmuth, Occam’s Razor, Information Processing Letters, 24(6) (1987) 377–380.

    Article  MathSciNet  Google Scholar 

  35. E. Allender, Applications of time-bounded kolmogorov complexity in complexity theory, O. Watanabe (Ed.), Kolmogorov Complexity and Computational Complexity, Springer, Berlin, Heidelberg, Germany (1992) 4–22.

    Chapter  Google Scholar 

  36. J. Schmidhuber, Discovering neural nets with low kolmogorov complexity and high generalization capability, Neural Networks, 10(5) (1997) 857–873.

    Article  Google Scholar 

  37. O. Watanabe, Kolmogorov Complexity and Computational Complexity, Springer Berlin Heidelberg, Berlin, Germany (1992).

    Book  Google Scholar 

  38. W L. Buntine and A. Weigend, Bayesian back-propagation, Complex Syst., 5 (1991).

  39. D. J. C. MacKay, A practical bayesian framework for back-propagation networks, Neural Computation, 4(3) (1992) 448–472.

    Article  Google Scholar 

  40. R. M. Neal, Bayesian Learning for Neural Networks, Springer New York, New York, USA (1996).

    Book  Google Scholar 

  41. D. M. Titterington, Bayesian methods for neural networks and related models, Statist. Sci., 19(1) (2004) 128–139.

    Article  MathSciNet  Google Scholar 

  42. E. B. Baum and D. Haussler, What size net gives valid generalization?, Neural Computation, 1(1) (1989) 151–160.

    Article  Google Scholar 

Download references