overview-of-nanovaccines-and-nanoadjuvants-–-springer

Overview of Nanovaccines and Nanoadjuvants – Springer

  • Abbasi E, Fekri Aval S, Akbarzadeh A, Milani M, Nasrabadi HT, Woo Joo S, Hanifehpour Y, Nejati-Koshki K, Pashaei-Asl R (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9(1):247. http://www.nanoscalereslett.com/content/9/1/247

  • Afshari H, Maleki M, Salouti M (2020) Immunological effects of two new nanovaccines against Brucella based on OPS and LPS antigens conjugated with PLGA nanoparticles. Eur Polym J 139:110021. https://doi.org/10.1016/j.eurpolymj.2020.110021

  • Aghebati T, Mohammadpour AH, Afshar M, Jaafari R, Abnous K, Nazemi S, Issazadeh S, Hashemzadeh S, Zare M, Badiee A (2016) A novel atheroprotective role of MF59-like adjuvant when co-administered with CETP vaccine in rabbit model of atherosclerosis. Iran J Basic Med Sci 19(12):1345–1352

  • Annu, Ahmed S (2021) Advanced green materials: an overview. In: Advanced green materials: fabrication, characterization and applications of biopolymers and biocomposites, pp 1–13. https://doi.org/10.1016/B978-0-12-819988-6.00001-X

  • Athanasiou E, Agallou M, Tastsoglou S, Kammona O, Hatzigeorgiou A, Kiparissides C, Karagouni E (2017) A poly(lactic-co-glycolic) acid nanovaccine based on chimeric peptides from different Leishmania infantum proteins induces dendritic cells maturation and promotes peptide-specific IFNγ-producing CD8+ T cells essential for the protection against experimental visceral leishmaniasis. Front Immunol 8:684. https://doi.org/10.3389/fimmu.2017.00684

  • Azharuddin M, Zhu GH, Sengupta A, Hinkula J, Slater NKH, Patra HK (2022) Nano toolbox in immune modulation and nanovaccines. Trends Biotechnol 40:1195. https://doi.org/10.1016/j.tibtech.2022.03.011

  • Bagheri-Josheghani S, Bakhshi B (2022) Formulation of selenium nanoparticles encapsulated by alginate-chitosan for controlled delivery of Vibrio cholerae LPS: a novel delivery system candidate for nanovaccine. Int J Biol Macromol 208:494–508. https://doi.org/10.1016/J.IJBIOMAC.2022.03.087

  • Behzadi E, Behzadi P (2016) The role of Toll-Like receptors (TLRs) in urinary tract infections (UTIs). Cent Eur J Urol 69(4):404–410. https://doi.org/10.5173/ceju.2016.871

  • Berd D, Sato T, Maguire HC, Kairys J, Mastrangelo MJ (2004) Immunopharmacologic analysis of an autologous, hapten-modified human melanoma vaccine. J Clin Oncol 22(3):403–415. https://doi.org/10.1200/JCO.2004.06.043

  • Bhardwaj P, Bhatia E, Sharma S, Ahamad N, Banerjee R (2020) Advancements in prophylactic and therapeutic nanovaccines. Acta Biomater 108:1–21. https://doi.org/10.1016/j.actbio.2020.03.020

  • Bigaeva E, van Doorn E, Liu H, Hak E (2016) Meta-analysis on randomized controlled trials of vaccines with QS-21 or IScomatrix adjuvant: safety and tolerability. PLoS One 11(5):e0154757. https://doi.org/10.1371/journal.pone.0154757

  • Biswas T, Dwivedi UN (2019) Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance. Protoplasma 256(6):1463–1486. https://doi.org/10.1007/s00709-019-01411-0

  • Bowen WS, Svrivastava AK, Batra L, Barsoumian H, Shirwan H (2018) Current challenges for cancer vaccine adjuvant development. Expert Rev Vaccines 17(3):207–215. https://doi.org/10.1080/14760584.2018.1434000

  • Brubaker SW, Bonham KS, Zanoni I, Kagan JC (2015) Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33:257. https://doi.org/10.1146/annurev-immunol-032414-112240

  • Buendía AJ, Cuello F, Del Rio L, Gallego MC, Caro MR, Salinas J (2001) Field evaluation of a new commercially available ELISA based on a recombinant antigen for diagnosing Chlamydophila abortus (Chlamydia psittaci serotype 1) infection. Vet Microbiol 78(3):229–239. https://doi.org/10.1016/S0378-1135(00)00298-4

  • Cao FQ, Yan MM, Liu YJ, Liu LX, Lu L, Wang H, Zhang C, Sun HF, Kong DL, Ma GL (2018) Photosensitizer-induced self-assembly of antigens as nanovaccines for cancer immunotherapy. Biomater Sci 6(3):473–477. https://doi.org/10.1039/c7bm01082f

  • Caproni E, Tritto E, Cortese M, Muzzi A, Mosca F, Monaci E, Baudner B, Seubert A, De Gregorio E (2012) MF59 and Pam3CSK4 boost adaptive responses to influenza subunit vaccine through an IFN type I-independent mechanism of action. J Immunol 188(7):3088–3098. https://doi.org/10.4049/jimmunol.1101764

  • Chauhan N, Tiwari S, Iype T, Jain U (2017) An overview of adjuvants utilized in prophylactic vaccine formulation as immunomodulators. Expert Rev Vaccines 16(5):491–502. https://doi.org/10.1080/14760584.2017.1306440

  • Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin F, Qoronfleh MW (2019) Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 23:20

  • Chong G, Su R, Gu J, Yang Y, Zhang T, Zang J, Zhao Y, Zheng X, Liu Y, Ruan S, He R, Yin W, Li Y, Dong H, Li Y (2022) Catalytic nanovaccine for cancer immunotherapy: a NADPH oxidase-inspired Fe-polyphenol network nanovaccine for enhanced antigen cross-presentation. Chem Eng J 435:134993. https://doi.org/10.1016/j.cej.2022.134993

  • Cibulski SP, Silveira F, Mourglia-Ettlin G, Teixeira TF, dos Santos HF, Yendo AC, de Costa F, Fett-Neto AG, Gosmann G, Roehe PM (2016) Quillaja brasiliensis saponins induce robust humoral and cellular responses in a bovine viral diarrhea virus vaccine in mice. Comp Immunol Microbiol Infect Dis 45:1–8. https://doi.org/10.1016/j.cimid.2016.01.004

  • Cibulski S, Rivera-Patron M, Suárez N, Pirez M, Rossi S, Yendo AC, de Costa F, Gosmann G, Fett-Neto A, Roehe PM, Silveira F (2017) Leaf saponins of Quillaja brasiliensis enhance long-term specific immune responses and promote dose-sparing effect in BVDV experimental vaccines. Vaccine 36(1):55–65. https://doi.org/10.1016/j.vaccine.2017.11.030

  • Cordeiro AS, Patil-Sen Y, Shivkumar M, Patel R, Khedr A, Elsawy MA (2021) Nanovaccine delivery approaches and advanced delivery systems for the prevention of viral infections: from development to clinical application. Pharmaceutics 13(12):2091. https://doi.org/10.3390/pharmaceutics13122091

  • Dandashli EA, Zhao Q, Yitta S, Morefield GL, White JL, Hem SL (2002) Effect of thermal treatment during the preparation of aluminum hydroxide adjuvant on the protein adsorption capacity during aging. Pharm Dev Technol 7(4):401–406. https://doi.org/10.1081/PDT-120015042

  • Fernando IPS, Lee WW, Han EJ, Ahn G (2020) Alginate-based nanomaterials: fabrication techniques, properties, and applications. Chem Eng J 391:123823. https://doi.org/10.1016/J.CEJ.2019.123823

  • Fox CB, Haensler J (2013) An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants. Expert Rev Vaccines 12(7):747–758. https://doi.org/10.1586/14760584.2013.811188

  • Fox CB, Van Hoeven N, Granger B, Lin S, Guderian JA, Hartwig A, Marlenee N, Bowen RA, Soultanov V, Carter D (2019) Vaccine adjuvant activity of emulsified oils from species of the Pinaceae family. Phytomedicine 64:152927. https://doi.org/10.1016/j.phymed.2019.152927

  • Garçon N, Vaughn DW, Didierlaurent AM (2012) Development and evaluation of AS03, an Adjuvant System containing α-tocopherol and squalene in an oil-in-water emulsion. Expert Rev Vaccines 11(3):349–366. https://doi.org/10.1586/erv.11.192

  • Gheibi Hayat SM, Darroudi M (2019) Nanovaccine: a novel approach in immunization. J Cell Physiol 234(8):12530–12536. https://doi.org/10.1002/jcp.28120

  • Gong N, Zhang Y, Teng X, Wang Y, Huo S, Qing G, Ni Q, Li X, Wang J, Ye X, Zhang T, Chen S, Wang Y, Yu J, Wang PC, Gan Y, Zhang J, Mitchell MJ, Li J, Liang XJ (2020) Proton-driven transformable nanovaccine for cancer immunotherapy. Nat Nanotechnol 15(12):1053–1064. https://doi.org/10.1038/s41565-020-00782-3

  • Guan X, Chen J, Hu Y, Lin L, Sun P, Tian H, Chen X (2018) Highly enhanced cancer immunotherapy by combining nanovaccine with hyaluronidase. Biomaterials 171:198–206. https://doi.org/10.1016/J.BIOMATERIALS.2018.04.039

  • Gupta RK (1998) Aluminum compounds as vaccine adjuvants. Adv Drug Deliv Rev 32(3):155–172. https://doi.org/10.1016/S0169-409X(98)00008-8

  • Hamaguchi H (1926) Immunological notes on human prolactin. Acta Obstet Gynaecol Jpn 22(9):995–1004

  • Jain KK (2008) Nanomedicine: application of nanobiotechnology in medical practice. Med Princ Pract 17(2):89–101. https://doi.org/10.1159/000112961

  • Jamiołkowska A, Kopacki M (2019) Natural compounds against plant pests and pathogens. In: Natural remedies for pest, disease and weed control. Elsevier, pp 55–63. https://doi.org/10.1016/B978-0-12-819304-4.00005-1

  • Jiexin L, Ren H, Sun Y, Liu G, Yang X, Qiu Q, Ding Y, Lovell JF, Zhang Y (2021) Magnetic metal micelles for enhanced delivery of self-immolating CD8+ T-cell epitopes for cancer immunotherapy. Chem Mater 33:167–209. https://doi.org/10.1007/978-88-7642-577-6_6

  • Karimi F, Alizadeh S, Alizadeh H (2018) Immunogenicity of multiwalled carbon nanotubes functionalized with recombinant protective antigen domain 4 toward development of a nanovaccine against anthrax. J Drug Deliv Sci Technol 47:322–329. https://doi.org/10.1016/j.jddst.2018.07.020

  • Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI, Ravindran R, Stewart S, Alam M, Kwissa M, Villinger F, Murthy N, Steel J, Jacob J, Hogan RJ, García-Sastre A, Compans R, Pulendran B (2011) Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470(7335):543–550. https://doi.org/10.1038/nature09737

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11(5):373–384. https://doi.org/10.1038/ni.1863

  • Kelly SM, Larsen KR, Darling R, Petersen AC, Bellaire BH, Wannemuehler MJ, Narasimhan B (2021) Single-dose combination nanovaccine induces both rapid and durable humoral immunity and toxin neutralizing antibody responses against Bacillus anthracis. Vaccine 39(29):3862–3870. https://doi.org/10.1016/J.VACCINE.2021.05.077

  • Kim GC, Kye CY, Yun HC (2019) The role of nanovaccine in cross-presentation of antigen-presenting cells for the activation of CD8+ T cell responses. Pharmaceutics 11(11):612. https://doi.org/10.3390/pharmaceutics11110612

  • Klein J, Ushio M, Burrell LS, Wenslow B, Hem SL (2000) Analysis of aluminum hydroxyphosphate vaccine adjuvants by 27Al MAS NMR. J Pharm Sci 89(3):311–321. CAS  PubMed  Google Scholar 

  • Kole S, Qadiri SSN, Shin SM, Kim WS, Lee J, Jung SJ (2019) PLGA encapsulated inactivated-viral vaccine: formulation and evaluation of its protective efficacy against viral haemorrhagic septicaemia virus (VHSV) infection in olive flounder (Paralichthys olivaceus) vaccinated by mucosal delivery routes. Vaccine 37(7):973–983. https://doi.org/10.1016/j.vaccine.2018.12.063

  • Kornuta CA, Bidart JE, Soria I, Gammella M, Quattrocchi V, Pappalardo JS, Salmaso S, Torchilin VP, Cheuquepán Valenzuela F, Hecker YP, Moore DP, Zamorano PI, Langellotti CA (2021) MANα1-2MAN decorated liposomes enhance the immunogenicity induced by a DNA vaccine against BoHV-1. Transbound Emerg Dis 68(2):587–597. https://doi.org/10.1111/tbed.13718

  • Kotsias F, Cebrian I, Alloatti A (2019) Antigen processing and presentation. Int Rev Cell Mol Biol 348:69–121. https://doi.org/10.1016/bs.ircmb.2019.07.005

  • Kwissa M, Nakaya HI, Oluoch H, Pulendran B (2012) Distinct TLR adjuvants differentially stimulate systemic and local innate immune responses in nonhuman primates. Blood 119(9):2044–2055. https://doi.org/10.1182/blood-2011-10-388579

  • Le Moigne V, Robreau G, Mahana W (2009) Immune response to Chlamydophila abortus POMP91B protein in the context of different Pathogen Associated Molecular Patterns (PAMP); role of antigen in the orientation of immune response. Toxins 1(2):59–73. https://doi.org/10.3390/toxins1020059

  • Leroux-Roels G (2009) Prepandemic H5N1 influenza vaccine adjuvanted with AS03: a review of the pre-clinical and clinical data. Expert Opin Biol Ther 9(8):1057–1071. https://doi.org/10.1517/14712590903066695

  • Liang Z, Zhu H, Wang X, Jing B, Li Z, Xia X, Sun H, Yang Y, Zhang W, Shi L, Zeng H, Sun B (2020) Adjuvants for coronavirus vaccines. Front Immunol 11:589833. https://doi.org/10.3389/fimmu.2020.589833

  • Lodaya RN, Kanitkar AP, Friedrich K, Henson D, Yamagata R, Nuti S, Mallett CP, Bertholet S, Amiji MM, O’Hagan DT (2019) Formulation design, optimization and in vivo evaluations of an α-tocopherol-containing self-emulsified adjuvant system using inactivated influenza vaccine. J Control Release 316:12–21. https://doi.org/10.1016/j.jconrel.2019.10.042

  • Longbottom D, Findlay J, Vretou E, Dunbar SM (1998) Immunoelectron microscopic localisation of the OMP90 family on the outer membrane surface of Chlamydia psittaci. FEMS Microbiol Lett 164(1):111–117. https://doi.org/10.1016/S0378-1097(98)00187-6

  • Luo Y, Wen YJ, Ding ZY, Fu CH, Wu Y, Liu JY, Li Q, He QM, Zhao X, Jiang Y, Li J, Deng HX, Kang B, Mao YQ, Wei YQ (2006) Immunotherapy of tumors with protein vaccine based on chicken homologous tie-2. Clin Cancer Res 12(6):1813–1819. https://doi.org/10.1158/1078-0432.CCR-05-1990

  • Luo L, Lucas RM, Liu L, Stow JL (2019) Signalling, sorting and scaffolding adaptors for Toll-like receptors. J Cell Sci 133(5):jcs239194. https://doi.org/10.1242/jcs.239194

  • Luo Z, He T, Liu P, Yi Z, Zhu S, Liang X, Kang E, Gong C, Liu X (2021) Self-adjuvanted molecular activator (SeaMac) nanovaccines promote cancer immunotherapy. Adv Healthc Mater 10(7):e2002080. https://doi.org/10.1002/adhm.202002080

  • Maina TW, Grego EA, Boggiatto PM, Sacco RE, Narasimhan B, Mcgill JL (2020) Applications of nanovaccines for disease prevention in cattle. Front Bioeng Biotechnol 8:608050. https://doi.org/10.3389/fbioe.2020.608050

  • McKee AS, MacLeod MKL, Kappler JW, Marrack P (2010) Immune mechanisms of protection: can adjuvants rise to the challenge? BMC Biol 8:1–10. https://doi.org/10.1186/1741-7007-8-34

  • Morein B, Sundquist B, Höglund S, Dalsgaard K, Osterhaus A (1984) Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 308(5958):457–460. https://doi.org/10.1038/308457a0

  • Morel S, Didierlaurent A, Bourguignon P, Delhaye S, Baras B, Jacob V, Planty C, Elouahabi A, Harvengt P, Carlsen H, Kielland A, Chomez P, Garçon N, Van Mechelen M (2011) Adjuvant system AS03 containing α-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 29(13):2461–2473. https://doi.org/10.1016/j.vaccine.2011.01.011

  • Morelli AB, Becher D, Koernig S, Silva A, Drane D, Maraskovsky E (2012) ISCOMATRIX: a novel adjuvant for use in prophylactic and therapeutic vaccines against infectious diseases. J Med Microbiol 61(PART7):935–943. https://doi.org/10.1099/jmm.0.040857-0

  • Narayanan KB, Park HH (2015) Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis 20(2):196–209. https://doi.org/10.1007/s10495-014-1073-1

  • Nierkens S, Tel J, Janssen E, Adema GJ (2013) Antigen cross-presentation by dendritic cell subsets: one general or all sergeants? Trends Immunol 34(8):361–370. https://doi.org/10.1016/j.it.2013.02.007

  • Nunes De Carvalho Lima E, Sobhie Diaz R, Justo JF, Roberto J, Piqueira C (2021) Advances and perspectives in the use of carbon nanotubes in vaccine development. Int J Nanomedicine 16:5411–5435. https://doi.org/10.2147/IJN.S314308

  • O’Hagan DT, Fox CB (2015) New generation adjuvants—from empiricism to rational design. Vaccine 33(S2):B14–B20. https://doi.org/10.1016/j.vaccine.2015.01.088

  • O’Hagan DT, Ott GS, Van Nest G, Rappuoli R, Del Giudice G (2013) The history of MF59® adjuvant: a phoenix that arose from the ashes. Expert Rev Vaccines 12(1):13–30. https://doi.org/10.1586/erv.12.140

  • O’Hagan DT, Lodaya RN, Lofano G (2020) The continued advance of vaccine adjuvants—‘we can work it out’. Semin Immunol 50:101426. https://doi.org/10.1016/j.smim.2020.101426

  • Ong GH, Lian BSX, Kawasaki T, Kawai T (2021) Exploration of pattern recognition receptor agonists as candidate adjuvants. Front Cell Infect Microbiol 11:1–17. https://doi.org/10.3389/fcimb.2021.745016

  • Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE (1999) Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci U S A 96(22):12923–12928. https://doi.org/10.1073/pnas.96.22.12923

  • Plotkin S (2014) History of vaccination. Proc Natl Acad Sci U S A 111(34):12283–12287. https://doi.org/10.1073/pnas.1400472111

  • Podda A (2001) The adjuvanted influenza vaccines with novel adjuvants: experience with the MF59-adjuvanted vaccine. Vaccine 19(17–19):2673–2680. https://doi.org/10.1016/S0264-410X(00)00499-0

  • Podda A, Del Giudice G (2003) MF59-adjuvanted vaccines: increased immunogenicity with an optimal safety profile. Expert Rev Vaccines 2(2):197–204. https://doi.org/10.1586/14760584.2.2.197

  • Renu S, Markazi AD, Dhakal S, Lakshmanappa YS, Gourapura SR, Shanmugasundaram R, Senapati S, Narasimhan B, Selvaraj RK, Renukaradhya GJ (2018) Surface engineered polyanhydride-based oral Salmonella subunit nanovaccine for poultry. Int J Nanomedicine 13:8195–8215. https://doi.org/10.2147/IJN.S185588

  • Renu S, Feliciano-Ruiz N, Ghimire S, Han Y, Schrock J, Dhakal S, Patil V, Krakowka S, Renukaradhya GJ (2020) Poly(I:C) augments inactivated influenza virus-chitosan nanovaccine induced cell mediated immune response in pigs vaccinated intranasally. Vet Microbiol 242:108611. https://doi.org/10.1016/J.VETMIC.2020.108611

  • Rivera-Patron M, Moreno M, Baz M, Roehe PM, Cibulski SP, Silveira F (2021) Iscom-like nanoparticles formulated with Quillaja brasiliensis saponins are promising adjuvants for seasonal influenza vaccines. Vaccine 9(11):1–18. https://doi.org/10.3390/vaccines9111350

  • Rosana S-V, Mercedes P, África G-F (2020) Polymeric nanostructure vaccines: applications and challenges. Exp Opin Drug Deliv 17(7):1007–1023. https://doi.org/10.1080/17425247.2020.1776259

  • Shen L, Higuchi T, Tubbe I, Voltz N, Krummen M (2013) A trifunctional dextran-based nanovaccine targets and activates murine dendritic cells, and induces potent cellular and humoral immune responses in vivo. PLoS One 8(12):80904. https://doi.org/10.1371/journal.pone.0080904

  • Shi S, Zhu H, Xia X, Liang Z, Ma X, Sun B (2019) Vaccine adjuvants: understanding the structure and mechanism of adjuvanticity. Vaccine 37(24):3167–3178. https://doi.org/10.1016/j.vaccine.2019.04.055

  • Silindir-Gunay M, Ozer AY (2018) Liposomes and micelles as nanocarriers for diagnostic and imaging purposes. In: Design of nanostructures for theranostics applications. Elsevier, pp 305–340. https://doi.org/10.1016/B978-0-12-813669-0.00008-7

  • Sivakumar SM, Safhi MM, Kannadasan M, Sukumaran N (2011) Vaccine adjuvants—current status and prospects on controlled release adjuvancity. Saudi Pharm J 19(4):197–206. https://doi.org/10.1016/j.jsps.2011.06.003

  • Stassijns J, Bollaerts K, Baay M, Verstraeten T (2016) A systematic review and meta-analysis on the safety of newly adjuvanted vaccines among children. Vaccine 34(6):714–722. https://doi.org/10.1016/j.vaccine.2015.12.024

  • Sun HX, Xie Y, Ye YP (2009) Advances in saponin-based adjuvants. Vaccine 27(12):1787–1796. https://doi.org/10.1016/j.vaccine.2009.01.091

  • Sun Z, Wang W, Wang R, Duan J, Hu Y, Ma J, Zhou J, Xie S, Lu X, Zhu Z, Chen S, Zhao Y, Xu H, Wang C, Yang XD (2010) Aluminum nanoparticles enhance anticancer immune response induced by tumor cell vaccine. Cancer Nanotechnol 1(1–6):63–69. https://doi.org/10.1007/s12645-010-0001-5

  • Tao W, Ni D, Liu G, Huang P, Mou X, Yang K, Maiti D, Tong X (2019) Carbon-based nanomaterials for biomedical applications: a recent study. Front Pharmacol 9:1401. https://doi.org/10.3389/fphar.2018.01401

  • Tizard IR (2021) Adjuvants and adjuvacanticity. Vaccines for Veterinarians 2021:75–86.e1. https://doi.org/10.1016/b978-0-323-68299-2.00016-2

  • Turk SP, Lumbard K, Liepshutz K, Williams C, Hu L, Dardick K, Wormser GP, Norville J, Scavarda C, McKenna D, Follmann D, Marques A (2019) Post-treatment Lyme disease symptoms score: developing a new tool for research. PLoS One 14(11):1–17. https://doi.org/10.1371/journal.pone.0225012

  • Vincken JP, Heng L, de Groot A, Gruppen H (2007) Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68(3):275–297. https://doi.org/10.1016/j.phytochem.2006.10.008

  • Vretou E, Giannikopoulou P, Longbottom D, Psarrou E (2003) Antigenic organization of the N-terminal part of the polymorphic outer membrane proteins 90, 91A, and 91B of Chlamydophila abortus. Infect Immun 71(6):3240–3250. https://doi.org/10.1128/IAI.71.6.3240-3250.2003

  • Vyas S, Dhoble S, Ghodake V, Patravale V (2020) Xyloglucan based mucosal nanovaccine for immunological protection against brucellosis developed by supercritical fluid technology. Int J Pharm X 2:100053. https://doi.org/10.1016/J.IJPX.2020.100053

  • Wagner DA, Kelly SM, Petersen AC, Peroutka-Bigus N, Darling RJ, Bellaire BH, Wannemuehler MJ, Narasimhan B (2019) Single-dose combination nanovaccine induces both rapid and long-lived protection against pneumonic plague. Acta Biomater 100:326–337. https://doi.org/10.1016/j.actbio.2019.10.016

  • Wang Y, Zhang S, Li H, Wang H, Zhang T, Hutchinson MR, Yin H, Wang X (2020) Small-molecule modulators of Toll-like receptors. Acc Chem Res 53(5):1046–1055. https://doi.org/10.1021/acs.accounts.9b00631

  • Xiao B, Li D, Xu H, Zhou X, Xu X, Qian Y, Yu F, Hu H, Zhou Z, Liu X, Gao J, Slater NKH, Shen Y, Tang J (2021) An MRI-trackable therapeutic nanovaccine preventing cancer liver metastasis. Biomaterials 274:120893. https://doi.org/10.1016/j.biomaterials.2021.120893

  • Xu J, Wang H, Xu L, Chao Y, Wang C, Han X, Dong Z, Chang H, Peng R, Cheng Y, Liu Z (2019) Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. Biomaterials 207:1–9. https://doi.org/10.1016/j.biomaterials.2019.03.037

  • Yam KK, Gupta J, Winter K, Allen E, Brewer A (2015) AS03-adjuvanted, very-low-dose influenza vaccines induce distinctive immune responses compared to unadjuvanted high-dose vaccines in BALB/c mice. Front Immunol 6:207. https://doi.org/10.3389/fimmu.2015.00207

  • Yam KK, Brewer A, Bleau V, Beaulieu É, Mallett CP, Ward BJ (2017) Low hemagglutinin antigen dose influenza vaccines adjuvanted with AS03 alter the long-term immune responses in BALB/c mice. Hum Vaccin Immunother 13:561–571

  • Yau KP, Schulze DG, Johnston CT, Hem SL (2006) Aluminum hydroxide adjuvant produced under constant reactant concentration. J Pharm Sci 95(8):1822–1833. https://doi.org/10.1002/jps.20692

  • Yendo ACA, de Costa F, Cibulski SP, Teixeira TF, Colling LC, Mastrogiovanni M, Soulé S, Roehe PM, Gosmann G, Ferreira FA, Fett-Neto AG (2016) A rabies vaccine adjuvanted with saponins from leaves of the soap tree (Quillaja brasiliensis) induces specific immune responses and protects against lethal challenge. Vaccine 34(20):2305–2311. https://doi.org/10.1016/j.vaccine.2016.03.070

  • Zhang N, Channappanavar R, Ma C, Wang L, Tang J, Garron T, Tao X, Tasneem S, Lu L, Tseng CTK, Zhou Y, Perlman S, Jiang S, Du L (2016) Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus. Cell Mol Immunol 13(2):180–190. https://doi.org/10.1038/cmi.2015.03

  • Zhang L, Xu L, Wang Y, Liu J, Tan G, Huang F, He N, Lu Z (2022) A novel therapeutic vaccine based on graphene oxide nanocomposite for tumor immunotherapy. Chin Chem Lett 33:4089. https://doi.org/10.1016/J.CCLET.2022.01.071