state-of-the-art-review-on-hydrogen’s-production,-storage,-and-potential-as-a-future-transportation-fuel-|-environmental-…-–-springer

State-of-the-art review on hydrogen’s production, storage, and potential as a future transportation fuel | Environmental … – Springer

  • Aali A, Pourmahmoud N, Zare V (2017) Exergoeconomic analysis and multi-objective optimization of a novel combined flash-binary cycle for Sabalan geothermal power plant in Iran. Energy Convers Manag 143:377–390. https://doi.org/10.1016/j.enconman.2017.04.025

    Article  CAS  Google Scholar 

  • Abe JO, Popoola API, Ajenifuja E, Popoola OM (2019) Hydrogen energy, economy and storage: review and recommendation. Int J Hydrogen Energy 44:15072–15086. https://doi.org/10.1016/j.ijhydene.2019.04.068

    Article  CAS  Google Scholar 

  • Acar C, Dincer I (2014) Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int J Hydrogen Energy 39:1–12. https://doi.org/10.1016/j.ijhydene.2013.10.060

    Article  CAS  Google Scholar 

  • Ahmed A, Seth S, Purewal J, et al (2019) Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nat. Commun 10: https://doi.org/10.1038/s41467-019-09365-w

  • Akasaka H, Takahata T, Toda I, Ono H, Ohshio S, Himeno S, Kokubu T, Saitoh H (2011) Hydrogen storage ability of porous carbon material fabricated from coffee bean wastes. Int J Hydrogen Energy 36:580–585. https://doi.org/10.1016/j.ijhydene.2010.09.102

    Article  CAS  Google Scholar 

  • Akrami E, Chitsaz A, Nami H, Mahmoudi SMS (2017) Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy. Energy 124:625–639. https://doi.org/10.1016/j.energy.2017.02.006

    Article  CAS  Google Scholar 

  • Aksoy N (2014) Power generation from geothermal resources in Turkey. Renew Energy 68:595–601. https://doi.org/10.1016/j.renene.2014.02.049

    Article  Google Scholar 

  • Al Obeidli A, Ben Salah H, Al Murisi M, Sabouni R (2022) Recent advancements in MOFs synthesis and their green applications. Int J Hydrogen Energy 47:2561–2593. https://doi.org/10.1016/j.ijhydene.2021.10.180

    Article  CAS  Google Scholar 

  • Allendorf MD, Hulvey Z, Gennett T et al (2018) An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage. Energy Environ Sci 11:2784–2812. https://doi.org/10.1039/C8EE01085D

    Article  CAS  Google Scholar 

  • Al-Mohammedawi HH, Znad H, Eroglu E (2019) Improvement of photofermentative biohydrogen production using pre-treated brewery wastewater with banana peels waste. Int J Hydrogen Energy 44:2560–2568. https://doi.org/10.1016/j.ijhydene.2018.11.223

    Article  CAS  Google Scholar 

  • Alstom Coradia iLint – the world’s 1st hydrogen powered passenger train. In: Alstom. https://www.alstom.com/solutions/rolling-stock/alstom-coradia-ilint-worlds-1st-hydrogen-powered-passenger-train.

  • Anandarajah G, McDowall W, Ekins P (2013) Decarbonising road transport with hydrogen and electricity: long term global technology learning scenarios. Int J Hydrogen Energy 38:3419–3432. https://doi.org/10.1016/j.ijhydene.2012.12.110

    Article  CAS  Google Scholar 

  • Anifantis AS, Colantoni A, Pascuzzi S (2017) Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating. Renew Energy 103:115–127. https://doi.org/10.1016/j.renene.2016.11.031

    Article  CAS  Google Scholar 

  • Antal MJ, Allen SG, Schulman D, Xu S, Divilio RJ (2000) Biomass gasification in supercritical water. Ind Eng Chem Res 39:4040–4053. https://doi.org/10.1021/ie0003436

    Article  CAS  Google Scholar 

  • Ariharan A, Viswanathan B, Nandhakumar V (2018) Nitrogen-incorporated carbon nanotube derived from polystyrene and polypyrrole as hydrogen storage material. Int J Hydrogen Energy 43:5077–5088. https://doi.org/10.1016/j.ijhydene.2018.01.110

    Article  CAS  Google Scholar 

  • Azadi P, Syed K, Farnood R (2009) Catalytic gasification of biomass model compound in near-critical water. Appl Catal A Gen 358:65–72. https://doi.org/10.1016/j.apcata.2009.01.041

    Article  CAS  Google Scholar 

  • Balat M (2006) Sustainable transportation fuels from biomass materials. Energy Educ Sci Tech 17(1/2):83

    CAS  Google Scholar 

  • Ball M, Weeda M (2015) The hydrogen economy – Vision or reality? Int J Hydrogen Energy 40:7903–7919. https://doi.org/10.1016/j.ijhydene.2015.04.032

    Article  CAS  Google Scholar 

  • Balta MT, Dincer I, Hepbasli A (2009) Geothermal-based hydrogen production using thermochemical and hybrid cycles: a review and analysis. Int J Hydrogen Energy 34:757–775. https://doi.org/10.1002/er.1589

    Article  CAS  Google Scholar 

  • Barampouti EM, Mai S, Malamis D, Moustakas K, Loizidou M (2019) Liquid biofuels from the organic fraction of municipal solid waste: a review. Renew Sustain Energy Rev 110:298–314. https://doi.org/10.1016/j.rser.2019.04.005

    Article  CAS  Google Scholar 

  • Barbir F (2009) Transition to renewable energy systems with hydrogen as an energy carrier. Energy 34:308–312. https://doi.org/10.1016/j.energy.2008.07.007

    Article  CAS  Google Scholar 

  • Barecka MH, Ager JW (2023) Towards an accelerated decarbonization of the chemical industry by electrolysis. Energy Adv 2:268–279. https://doi.org/10.1039/d2ya00134a

    Article  Google Scholar 

  • Bartels JR, Pate MB, Olson NK (2010) An economic survey of hydrogen production from conventional and alternative energy sources. Int J Hydrogen Energy 35:8371–8384. https://doi.org/10.1016/j.ijhydene.2010.04.035

    Article  CAS  Google Scholar 

  • Basu P, Mettanant V (2009) Biomass gasification in supercritical water — a review. IJCRE 7: https://doi.org/10.2202/1542-6580.1919

  • Belz S (2016) A synergetic use of hydrogen and fuel cells in human spaceflight power systems. Acta Astronaut 121:323–331. https://doi.org/10.1016/j.actaastro.2015.05.031

    Article  Google Scholar 

  • Bicer Y, Dincer I (2016) Development of a new solar and geothermal based combined system for hydrogen production. Sol Energy 127:269–284. https://doi.org/10.1016/j.solener.2016.01.031

    Article  CAS  Google Scholar 

  • Bobbitt NS, Chen J, Snurr RQ (2016) High-Throughput screening of metal–organic frameworks for hydrogen storage at cryogenic temperature. J Phys Chem C 120:27328–27341. https://doi.org/10.1021/acs.jpcc.6b08729

    Article  CAS  Google Scholar 

  • Boudellal M (2018) Power-to-Gas. De Gruyter. https://doi.org/10.1515/9783110559811

    Article  Google Scholar 

  • Boyaghchi FA, Safari H (2017) Parametric study and multi-criteria optimization of total exergetic and cost rates improvement potentials of a new geothermal based quadruple energy system. Energy Convers Manag 137:130–141. https://doi.org/10.1016/j.enconman.2017.01.047

    Article  Google Scholar 

  • Brandon NP, Kurban Z (2017) Clean energy and the hydrogen economy. Philos Trans Math Phys Eng Sci 375:20160400. https://doi.org/10.1098/rsta.2016.0400

    Article  CAS  Google Scholar 

  • Browning DJ, Gerrard ML, Lakeman JB, Mellor IM, Mortimer RJ, Turpin MC (2002) Studies into the storage of hydrogen in carbon nanofibers: proposal of a possible reaction mechanism. Nano Lett 2:201–205. https://doi.org/10.1021/nl015576g

    Article  CAS  Google Scholar 

  • Cakici DM, Erdogan A, Colpan CO (2017) Thermodynamic performance assessment of an integrated geothermal powered supercritical regenerative organic Rankine cycle and parabolic trough solar collectors. Energy 120:306–319. https://doi.org/10.1016/j.energy.2016.11.083

    Article  CAS  Google Scholar 

  • Calise F, d’Accadia MD, Macaluso A, Piacentino A, Vanoli L (2016) Exergetic and exergoeconomic analysis of a novel hybrid solar–geothermal polygeneration system producing energy and water. Energy Convers Manag 115:200–220. https://doi.org/10.1016/j.enconman.2016.02.029

    Article  Google Scholar 

  • Caliskan H, Dincer I, Hepbasli A (2013) Energy, exergy and sustainability analyses of hybrid renewable energy-based hydrogen and electricity production and storage systems: modeling and case study. Appl Therm Eng 61:784–798. https://doi.org/10.1016/j.applthermaleng.2012.04.026

    Article  Google Scholar 

  • Canavesio CA, Nassini D, Nassini HE, Bohé AE (2020) Study on an original cobalt-chlorine thermochemical cycle for nuclear hydrogen production. Int J Hydrogen Energy 45:26090–26103. https://doi.org/10.1016/j.ijhydene.2019.08.137

    Article  CAS  Google Scholar 

  • Cao W, Cao C, Guo L, Jin H, Dargusch M, Bernhardt D, Yao X (2016) Hydrogen production from supercritical water gasification of chicken manure. Int J Hydrogen Energy 41:22722–22731. https://doi.org/10.1016/j.ijhydene.2016.09.031

    Article  CAS  Google Scholar 

  • Cao C, Xu L, He Y, Guo L, Jin H, Huo Z (2017) High-efficiency gasification of wheat straw black liquor in supercritical water at high temperatures for hydrogen production. Energ Fuel 31:3970–3978. https://doi.org/10.1021/acs.energyfuels.6b03002

    Article  CAS  Google Scholar 

  • Cao L, Lou J, Wang J, Dai Y (2018) Exergy analysis and optimization of a combined cooling and power system driven by geothermal energy for ice-making and hydrogen production. Energy Convers Manag 174:886–896. https://doi.org/10.1016/j.enconman.2018.08.067

    Article  CAS  Google Scholar 

  • Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934. https://doi.org/10.1016/j.ijhydene.2013.01.151

    Article  CAS  Google Scholar 

  • Casademont P, García-Jarana MB, Sánchez-Oneto J, Portela JR, de la Ossa EJM (2017) Supercritical water gasification: a patents review. Rev Chem Eng 33:237–261. https://doi.org/10.1515/revce-2016-0020

    Article  CAS  Google Scholar 

  • Chae HK, Siberio-Pérez DY, Kim J, Gp YB, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527. https://doi.org/10.1038/nature02311

    Article  CAS  Google Scholar 

  • Chambers A, Park C, Baker RTK, Rodriguez NM (1998) Hydrogen storage in graphite nanofibers. J Phys Chem B 102:4253–4256. https://doi.org/10.1021/jp980114l

    Article  CAS  Google Scholar 

  • Charles MB, Ryan R, Oloruntoba R, van der Heidt T, Ryan N (2009) The EU–Africa Energy Partnership: towards a mutually beneficial renewable transport energy alliance? Energy Policy 37:5546–5556. https://doi.org/10.1016/j.enpol.2009.08.016

    Article  Google Scholar 

  • Chen P (1999) High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285:91–93. https://doi.org/10.1126/science.285.5424.91

    Article  CAS  Google Scholar 

  • Chen G, Andries J, Spliethoff H (2003) Catalytic pyrolysis of biomass for hydrogen rich fuel gas production. Energy Convers Manag 44:2289–2296. https://doi.org/10.1016/s0196-8904(02)00254-6

    Article  CAS  Google Scholar 

  • Chen T, Wu C, Liu R (2011) Steam reforming of bio-oil from rice husks fast pyrolysis for hydrogen production. Bioresour Technol 102:9236–9240. https://doi.org/10.1016/j.biortech.2011.07.033

    Article  CAS  Google Scholar 

  • Chen Y, Guo L, Cao W, Jin H, Guo S, Zhang X (2013) Hydrogen production by sewage sludge gasification in supercritical water with a fluidized bed reactor. Int J Hydrogen Energy 38:12991–12999. https://doi.org/10.1016/j.ijhydene.2013.03.165

    Article  CAS  Google Scholar 

  • Cheng H-M, Yang Q-H, Liu C (2001) Hydrogen storage in carbon nanotubes. Carbon 39:1447–1454. https://doi.org/10.1016/S0008-6223(00)00306-7

    Article  CAS  Google Scholar 

  • Chi J, Yu H (2018) Water electrolysis based on renewable energy for hydrogen production. Chinese J Catal 39:390–394. https://doi.org/10.1016/s1872-2067(17)62949-8

    Article  CAS  Google Scholar 

  • Chianese S, Fail S, Binder M, Rauch R, Hofbauer H, Molino A, Blasi A, Musmarra D (2016) Experimental investigations of hydrogen production from CO catalytic conversion of tar rich syngas by biomass gasification. Catal Today 277:182–191. https://doi.org/10.1016/j.cattod.2016.04.005

    Article  CAS  Google Scholar 

  • Collins DJ, Zhou H-C (2007) Hydrogen storage in metal–organic frameworks. J Mater Chem 17:3154. https://doi.org/10.1039/b702858j

    Article  CAS  Google Scholar 

  • Collins L (2022) SPECIAL REPORT | Why shipping pure hydrogen around the world might already be dead in the water | Recharge. In: Recharge | Latest renewable energy news. https://www.rechargenews.com/energy-transition/special-report-why-shipping-pure-hydrogen-around-the-world-might-already-be-dead-in-the-water/2-1-1155434.

  • Conner WC, Falconer JL (1995) Spillover in heterogeneous catalysis. Chem Rev 95:759–788. https://doi.org/10.1021/cr00035a014

    Article  CAS  Google Scholar 

  • Das D (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28. https://doi.org/10.1016/s0360-3199(00)00058-6

    Article  CAS  Google Scholar 

  • Dawood F, Anda M, Shafiullah GM (2020) Hydrogen production for energy: an overview. Int J Hydrogen Energy 45:3847–3869. https://doi.org/10.1016/j.ijhydene.2019.12.059

    Article  CAS  Google Scholar 

  • Dawood Al-Mosuli, Shahzad Barghi, Fang Z, Chunbao (Charles) Xu (2014) Techno-economic analysis of renewable hydrogen production via SCWG of biomass using glucose as a model compound. Biofuels and biorefineries 445–471. https://doi.org/10.1007/978-94-017-8923-3_17.

  • de la Casa-Lillo MA, Lamari-Darkrim F, Cazorla-Amorós D, Linares-Solano A (2002) Hydrogen storage in activated carbons and activated carbon fibers. J Phys Chem B 106:10930–10934. https://doi.org/10.1021/jp014543m

    Article  CAS  Google Scholar 

  • Demessence A, D’Alessandro DM, Foo ML, Long JR (2009) Strong CO2 Binding in a water-stable, triazolate-bridged metal−organic framework functionalized with ethylenediamine. J Am Chem Soc 131:8784–8786. https://doi.org/10.1021/ja903411w

    Article  CAS  Google Scholar 

  • Demirbaş A (2005) Hydrogen production via pyrolytic degradation of agricultural residues. Energy Sources 27:769–775. https://doi.org/10.1080/00908310490478782

    Article  CAS  Google Scholar 

  • Demirbas AH (2008) Global Geothermal Energy Scenario by 2040. Energy Sources A: Recovery Util. Environ Eff 30:1890–1895. https://doi.org/10.1080/15567030701468027

    Article  Google Scholar 

  • Demirbas A (2009) Biofuels from agricultural biomass. Energy Sources A: Recovery Util. Environ Eff 31:1573–1582. https://doi.org/10.1080/15567030802094011

    Article  CAS  Google Scholar 

  • Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24:471–482. https://doi.org/10.1080/00908310252889979

    Article  CAS  Google Scholar 

  • Deniz I, Vardar-Sukan F, Yüksel M, Saglam M, Ballice L, Yesil-Celiktas O (2015) Hydrogen production from marine biomass by hydrothermal gasification. Energy Convers Manag 96:124–130. https://doi.org/10.1016/j.enconman.2015.02.048

    Article  CAS  Google Scholar 

  • Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379. https://doi.org/10.1038/386377a0

    Article  CAS  Google Scholar 

  • Dillon AC, Gennett T, Alleman L, Jones KM, Parilla PA, Haben MJ (2000) Carbon nanotube materials for hydrogen storage. In: Proceedings of the 2000 DOE/NREL Hydrogen Program Review, May 8–10, 2000, San Ramon, California.

  • Duman G, Uddin MdA, Yanik J (2014) Hydrogen production from algal biomass via steam gasification. Bioresour Technol 166:24–30. https://doi.org/10.1016/j.biortech.2014.04.096

    Article  CAS  Google Scholar 

  • Dutta S (2014) A review on production, storage of hydrogen and its utilization as an energy resource. J Ind Eng Chem 20:1148–1156. https://doi.org/10.1016/j.jiec.2013.07.037

    Article  CAS  Google Scholar 

  • Eatwell-Hall REA, Sharifi VN, Swithenbank J (2010) Hydrogen production from molten metal gasification. Int J Hydrogen Energy 35:13168–13178. https://doi.org/10.1016/j.ijhydene.2010.09.003

    Article  CAS  Google Scholar 

  • Ebadi AG, Hisoriev H, Zarnegar M, Ahmadi H (2018) Hydrogen and syngas production by catalytic gasification of algal biomass (Cladophora glomerata L.) using alkali and alkaline-earth metals compounds. Environ Technol 40:1178–1184. https://doi.org/10.1080/09593330.2017.1417495

    Article  CAS  Google Scholar 

  • Ebadollahi M, Rostamzadeh H, Pedram MZ, Ghaebi H, Amidpour M (2019) Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery. Renew Energy 135:66–87. https://doi.org/10.1016/j.renene.2018.11.108

    Article  CAS  Google Scholar 

  • Eddaoudi M (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472. https://doi.org/10.1126/science.1067208

    Article  CAS  Google Scholar 

  • Edwards PP, Kuznetsov VL, David WIF, Brandon NP (2008) Hydrogen and fuel cells: towards a sustainable energy future. Energy Policy 36:4356–4362. https://doi.org/10.1016/j.enpol.2008.09.036

    Article  Google Scholar 

  • Edwards M (2021) How safe are hydrogen fuel cells in vehicles? In: IOSH Magazine. https://www.ioshmagazine.com/2021/05/27/how-safe-are-hydrogen-fuel-cells-vehicles. Accessed 20 Apr 2024

  • El-Emam RS, Özcan H (2019) Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production. J Clean Prod 220:593–609. https://doi.org/10.1016/j.jclepro.2019.01.309

    Article  CAS  Google Scholar 

  • El-Emam RS, Ozcan H, Zamfirescu C (2020) Updates on promising thermochemical cycles for clean hydrogen production using nuclear energy. J Clean Prod 262:121424. https://doi.org/10.1016/j.jclepro.2020.121424

    Article  CAS  Google Scholar 

  • Elreedy A, Tawfik A (2015) Effect of hydraulic retention time on hydrogen production from the dark fermentation of petrochemical effluents contaminated with ethylene glycol. Energy Procedia 74:1071–1078. https://doi.org/10.1016/j.egypro.2015.07.746

    Article  CAS  Google Scholar 

  • Emadi MA, Pourrahmani H, Moghimi M (2018) Performance evaluation of an integrated hydrogen production system with LNG cold energy utilization. Int J Hydrogen Energy 43:22075–22087. https://doi.org/10.1016/j.ijhydene.2018.10.048

    Article  CAS  Google Scholar 

  • Fan Y-Y, Liao B, Liu M, Wei Y-L, Lu M-Q, Cheng H-M (1999) Hydrogen uptake in vapor-grown carbon nanofibers. Carbon 37:1649–1652. https://doi.org/10.1016/s0008-6223(99)00165-7

    Article  CAS  Google Scholar 

  • Fan YJ, Zhu W, Gong M, Su Y, Zhang HW, Zeng JN (2016) Catalytic gasification of dewatered sewage sludge in supercritical water: influences of formic acid on hydrogen production. Int J Hydrogen Energy 41:4366–4373. https://doi.org/10.1016/j.ijhydene.2015.11.071

    Article  CAS  Google Scholar 

  • Ferdous D, Dalai AK, Bej SK, Thring RW, Bakshi NN (2001) Production of H2 and medium Btu gas via pyrolysis of lignins in a fixed-bed reactor. Fuel Process Technol 70:9–26. https://doi.org/10.1016/s0378-3820(00)00147-8

    Article  CAS  Google Scholar 

  • Fernandes A, Woudstra T, van Wijk A, Verhoef L, Aravind PV (2016) Fuel cell electric vehicle as a power plant and SOFC as a natural gas reformer: an exergy analysis of different system designs. Appl Energy 173:13–28. https://doi.org/10.1016/j.apenergy.2016.03.107

    Article  CAS  Google Scholar 

  • Fierro V, Szczurek A, Zlotea C, Marêché JF, Izquierdo MT, Albiniak A, Latroche M, Furdin G, Celzard A (2010) Experimental evidence of an upper limit for hydrogen storage at 77 K on activated carbons. Carbon 48:1902–1911. https://doi.org/10.1016/j.carbon.2010.01.052

    Article  CAS  Google Scholar 

  • Fischer M, Hoffmann F, Fröba M (2009) Preferred hydrogen adsorption sites in various MOFs-a comparative computational study. ChemPhysChem 10:2647–2657. https://doi.org/10.1002/cphc.200900459

    Article  CAS  Google Scholar 

  • Frattini D, Cinti G, Bidini G, Desideri U, Cioffi R, Jannelli E (2016) A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants. Renew Energy 99:472–482. https://doi.org/10.1016/j.renene.2016.07.040

    Article  CAS  Google Scholar 

  • Gadalla M, Zafar S (2016) Analysis of a hydrogen fuel cell-PV power system for small UAV. Int J Hydrogen Energy 41:6422–6432. https://doi.org/10.1016/j.ijhydene.2016.02.129

    Article  CAS  Google Scholar 

  • Gai C, Guo Y, Liu T, Peng N, Liu Z (2016) Hydrogen-rich gas production by steam gasification of hydrochar derived from sewage sludge. Int J Hydrogen Energy 41:3363–3372. https://doi.org/10.1016/j.ijhydene.2015.12.188

    Article  CAS  Google Scholar 

  • Ganjehsarabi H (2019) Mixed refrigerant as working fluid in Organic Rankine Cycle for hydrogen production driven by geothermal energy. Int J Hydrogen Energy 44:18703–18711. https://doi.org/10.1016/j.ijhydene.2018.11.231

    Article  CAS  Google Scholar 

  • Gao N, Li A, Quan C, Gao F (2008) Hydrogen-rich gas production from biomass steam gasification in an updraft fixed-bed gasifier combined with a porous ceramic reformer. Int J Hydrogen Energy 33:5430–5438. https://doi.org/10.1016/j.ijhydene.2008.07.033

    Article  CAS  Google Scholar 

  • Gao N, Li A, Quan C (2009) A novel reforming method for hydrogen production from biomass steam gasification. Bioresour Technol 100:4271–4277. https://doi.org/10.1016/j.biortech.2009.03.045

    Article  CAS  Google Scholar 

  • Gayathri V, Geetha R (2007) Hydrogen adsorption in defected carbon nanotubes. Adsorption 13:53–59. https://doi.org/10.1007/s10450-007-9002-z

    Article  CAS  Google Scholar 

  • Gayathri V, Devi NR, Geetha R (2010) Hydrogen storage in coiled carbon nanotubes. Int J Hydrogen Energy 35:1313–1320. https://doi.org/10.1016/j.ijhydene.2009.11.083

    Article  CAS  Google Scholar 

  • Ghaebi H, Farhang B, Parikhani T, Rostamzadeh H (2018) Energy, exergy and exergoeconomic analysis of a cogeneration system for power and hydrogen production purpose based on TRR method and using low grade geothermal source. Geothermics 71:132–145. https://doi.org/10.1016/j.geothermics.2017.08.011

    Article  Google Scholar 

  • Ghazvini M, Sadeghzadeh M, Ahmadi MH, et al (2019) Geothermal energy use in hydrogen production: a review. Int J Energy Res 1–19. https://doi.org/10.1002/er.4778

  • Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95. https://doi.org/10.1016/j.apenergy.2015.01.045

    Article  CAS  Google Scholar 

  • Gholamian E, Habibollahzade A, Zare V (2018) Development and multi-objective optimization of geothermal-based organic Rankine cycle integrated with thermoelectric generator and proton exchange membrane electrolyzer for power and hydrogen production. Energy Convers Manag 174:112–125. https://doi.org/10.1016/j.enconman.2018.08.027

    Article  CAS  Google Scholar 

  • Ghosh S, Dairkee UK, Chowdhury R, Bhattacharya P (2017) Hydrogen from food processing wastes via photofermentation using purple non-sulfur bacteria (PNSB) – a review. Energy Convers Manag 141:299–314. https://doi.org/10.1016/j.enconman.2016.09.001

    Article  CAS  Google Scholar 

  • Gómez-Gualdrón DA, Colón YJ, Zhang X, Wang TC, Chen Y-S, Hupp JT, Yildrim T, Farha OK, Zhang J, Snurr RQ (2016) Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy Environ Sci 9:3279–3289. https://doi.org/10.1039/c6ee02104b

    Article  Google Scholar 

  • Gong M, Zhu W, Xu ZR, Zhang HW, Yang HP (2014a) Influence of sludge properties on the direct gasification of dewatered sewage sludge in supercritical water. Renew Energy 66:605–611. https://doi.org/10.1016/j.renene.2014.01.006

    Article  CAS  Google Scholar 

  • Gong M, Zhu W, Zhang HW et al (2014b) Influence of NaOH and Ni catalysts on hydrogen production from the supercritical water gasification of dewatered sewage sludge. Int J Hydrogen Energy 39:19947–19954. https://doi.org/10.1016/j.ijhydene.2014.10.051

    Article  CAS  Google Scholar 

  • Gong M, Zhu W, Fan Y, Zhang H, Su Y (2016) Influence of the reactant carbon-hydrogen-oxygen composition on the key products of the direct gasification of dewatered sewage sludge in supercritical water. Bioresour Technol 208:81–86. https://doi.org/10.1016/j.biortech.2016.02.070

    Article  CAS  Google Scholar 

  • Guan Y, Pei A, Guo L (2008) Hydrogen production by catalytic gasification of cellulose in supercritical water. Front Chem Eng 2:176–180. https://doi.org/10.1007/s11705-008-0026-z

    Article  CAS  Google Scholar 

  • Güngören Madenoğlu T, Boukis N, Sağlam M, Yüksel M (2011) Supercritical water gasification of real biomass feedstocks in continuous flow system. Int J Hydrogen Energy 36:14408–14415. https://doi.org/10.1016/j.ijhydene.2011.08.047

    Article  CAS  Google Scholar 

  • Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243:49–54. https://doi.org/10.1016/0009-2614(95)00825-o

    Article  CAS  Google Scholar 

  • Gupta BK, Tiwari RS, Srivastava ON (2004) Studies on synthesis and hydrogenation behaviour of graphitic nanofibres prepared through palladium catalyst assisted thermal cracking of acetylene. J Alloys Compd 381:301–308. https://doi.org/10.1016/j.jallcom.2004.03.094

    Article  CAS  Google Scholar 

  • H2-Stations. In: H2Stations.org. https://www.h2stations.org/

  • Hallenbeck PC, Liu Y (2016) Recent advances in hydrogen production by photosynthetic bacteria. Int J Hydrogen Energy 41:4446–4454. https://doi.org/10.1016/j.ijhydene.2015.11.090

    Article  CAS  Google Scholar 

  • Hao X (2003) Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. Int J Hydrogen Energy 28:55–64. https://doi.org/10.1016/s0360-3199(02)00056-3

    Article  CAS  Google Scholar 

  • Hauch A (2008) Solid oxide electrolysis cells: performance and durability. Risø National Laboratory, Roskilde, Denmark.

  • He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int 2013:1–12. https://doi.org/10.1155/2013/578290

    Article  CAS  Google Scholar 

  • He C, Wang K, Giannis A, Yang Y, Wang J-Y (2015) Products evolution during hydrothermal conversion of dewatered sewage sludge in sub- and near-critical water: effects of reaction conditions and calcium oxide additive. Int J Hydrogen Energy 40:5776–5787. https://doi.org/10.1016/j.ijhydene.2015.03.006

    Article  CAS  Google Scholar 

  • Heng L, Zhang H, Xiao R (2016) Hydrogen production from heavy fraction of bio-oil using iron-based chemical looping process: thermodynamic simulation and performance analysis. Int J Hydrogen Energy 41:17771–17783. https://doi.org/10.1016/j.ijhydene.2016.07.068

    Article  CAS  Google Scholar 

  • Heo J (2024) Science UNI of, Technology Research findings could enable high-density hydrogen storage for future energy systems. In: phys.org. https://phys.org/news/2024-02-enable-high-density-hydrogen-storage.html. Accessed 20 Apr 2024.

  • Hermosillalara G, Momen G, Marty P, Leneindre B, Hassouni K (2007) Hydrogen storage by adsorption on activated carbon: investigation of the thermal effects during the charging process. Int J Hydrogen Energy 32:1542–1553. https://doi.org/10.1016/j.ijhydene.2006.10.048

    Article  CAS  Google Scholar 

  • Herzog A (n.d.) A hydrogen future? An economic and environmental assessment of hydrogen production pathways. Natural resources Defense council Marikatatsutani, consultant. Natural Resources Defense Council issue paper; 200.

  • Hirscher M, Becher M, Haluska M, Dettlaff-Weglikowska U, Quintel A, Duesberg GS, Choi Y-M, Downes P, Hulman M, Roth S, Stepanek I, Bernier P (2001) Hydrogen storage in sonicated carbon materials. Appl Phys a: Mater Sci Process 72:129–132. https://doi.org/10.1007/s003390100816

    Article  CAS  Google Scholar 

  • Hirscher M, Panella B (2005) Nanostructures with high surface area for hydrogen storage. J Alloys Compd 404–406:399–401. https://doi.org/10.1016/j.jallcom.2004.11.109

  • Hirscher M (2010) Handbook of hydrogen storage: new materials for future energy storage. Wiley-Vch, Cop, Weinheim.

  • Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260. https://doi.org/10.1016/j.cattod.2008.08.039

    Article  CAS  Google Scholar 

  • Hoogwijk M, Faaij A, Eickhout B, de Vries B, Turkenburg W (2005) Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass and Bioenerg 29:225–257. https://doi.org/10.1016/j.biombioe.2005.05.002

    Article  Google Scholar 

  • Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sustain Energy Rev 57:850–866. https://doi.org/10.1016/j.rser.2015.12.112

    Article  CAS  Google Scholar 

  • Hou C, Xu Q (2018) Metal–organic frameworks for energy. Adv Energy Mater 9:1801307. https://doi.org/10.1002/aenm.201801307

    Article  CAS  Google Scholar 

  • Hua T, Ahluwalia R, Eudy L, Singer G, Jermer B, Asselin-Miller N, Wessel S, Patterson T, Marcinkoski J (2014) Status of hydrogen fuel cell electric buses worldwide. J Power Sources 269:975–993. https://doi.org/10.1016/j.jpowsour.2014.06.055

    Article  CAS  Google Scholar 

  • Hwang JY, Lee SH, Sim KS, Kim JW (2002) Synthesis and hydrogen storage of carbon nanofibers. Synth Met 126:81–85. https://doi.org/10.1016/s0379-6779(01)00543-4

    Article  CAS  Google Scholar 

  • Hydrogen I (2017) Iea hydrogen implementing agreement 2017 annual report. In: MARY-ROSE de VALLADARES. USA: M.R.S. ENTERPRISES, LLC.

  • Iyakutti K, Kawazoe Y, Rajarajeswari M, Surya V (2009) Aluminium hydride coated single-walled carbon nanotube as a hydrogen storage medium. Int J Hydrogen Energy 34:370–375. https://doi.org/10.1016/j.ijhydene.2008.09.086

    Article  CAS  Google Scholar 

  • Jang S, Kim D-H, Yun Y-M, Lee M-K, Moon C, Kang W-S, Kwak S-S, Kim M-S (2015) Hydrogen fermentation of food waste by alkali-shock pretreatment: microbial community analysis and limitation of continuous operation. Bioresour Technol 186:215–222. https://doi.org/10.1016/j.biortech.2015.03.031

    Article  CAS  Google Scholar 

  • Jiang H, Wu Y, Fan H, Ji J (2012) Hydrogen production from biomass pyrolysis in molten alkali. AASRI Procedia 3:217–223. https://doi.org/10.1016/j.aasri.2012.11.036

    Article  Google Scholar 

  • Kadier A, Kalil MS, Abdeshahian P, Chandrasekhar K, Mohamed A, Azman NF, Logrono W, Simayi Y, Hamid AA (2016) Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renew Sustain Energy Rev 61:501–525. https://doi.org/10.1016/j.rser.2016.04.017

    Article  CAS  Google Scholar 

  • Kaewpanha M, Guan G, Ma Y, Hao X, Zhang Z, Reubroychareon P, Kusakabe K, Abudula A (2015) Hydrogen production by steam reforming of biomass tar over biomass char supported molybdenum carbide catalyst. Int J Hydrogen Energy 40:7974–7982. https://doi.org/10.1016/j.ijhydene.2015.04.068

    Article  CAS  Google Scholar 

  • Kang K, Azargohar R, Dalai AK, Wang H (2016) Hydrogen production from lignin, cellulose and waste biomass via supercritical water gasification: catalyst activity and process optimization study. Energy Convers Manag 117:528–537. https://doi.org/10.1016/j.enconman.2016.03.008

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582. https://doi.org/10.1016/j.enzmictec.2005.09.015

    Article  CAS  Google Scholar 

  • Karapekmez A, Dincer I (2020) Thermodynamic analysis of a novel solar and geothermal based combined energy system for hydrogen production. Int J Hydrogen Energy 45:5608–5628. https://doi.org/10.1016/j.ijhydene.2018.12.046

    Article  CAS  Google Scholar 

  • Karytsas S, Polyzou O, Karytsas C (2018) Social aspects of geothermal energy in Greece. 123–144. https://doi.org/10.1007/978-3-319-78286-7_9.

  • Kashani-Nejad S, Ng K-W, Harris R (2005) MgOHCl thermal decomposition kinetics. Metall Mater Trans B 36:153–157. https://doi.org/10.1007/s11663-005-0015-2

    Article  Google Scholar 

  • Kaskun S, Kayfeci M (2018) The synthesized nickel-doped multi-walled carbon nanotubes for hydrogen storage under moderate pressures. Int J Hydrogen Energy 43:10773–10778. https://doi.org/10.1016/j.ijhydene.2018.01.084

    Article  CAS  Google Scholar 

  • Khare R, Bose S (2005) Carbon nanotube based composites- a review. JMMCE 04:31–46. https://doi.org/10.4236/jmmce.2005.41004

    Article  Google Scholar 

  • Kianfard H, Khalilarya S, Jafarmadar S (2018) Exergy and exergoeconomic evaluation of hydrogen and distilled water production via combination of PEM electrolyzer, RO desalination unit and geothermal driven dual fluid ORC. Energy Convers Manag 177:339–349. https://doi.org/10.1016/j.enconman.2018.09.057

    Article  CAS  Google Scholar 

  • Kıpçak E, Söğüt OÖ, Akgün M (2011) Hydrothermal gasification of olive mill wastewater as a biomass source in supercritical water. J Supercrit Fluids 57:50–57. https://doi.org/10.1016/j.supflu.2011.02.006

    Article  CAS  Google Scholar 

  • Ekin Kıpçak, Mesut Akgün (2015) Hydrogen production by supercritical water gasification of biomass. Biofuels and biorefineries 179–220. https://doi.org/10.1007/978-94-017-7330-0_7.

  • Kiyobayashi T, Takeshita HT, Tanaka H, Takeichi N, Züttel A, Schlapbach L, Kuriyama N (2002) Hydrogen adsorption in carbonaceous materials. J Alloys Compd 330–332:666–669. https://doi.org/10.1016/s0925-8388(01)01436-0

    Article  Google Scholar 

  • Köhler J, Wietschel M, Whitmarsh L, Keles D, Schade W (2010) Infrastructure investment for a transition to hydrogen automobiles. Technol Forecast Soc Change 77:1237–1248. https://doi.org/10.1016/j.techfore.2010.03.010

    Article  Google Scholar 

  • Koj JC, Schreiber A, Zapp P, Marcuello P (2015) Life cycle assessment of improved high pressure alkaline electrolysis. Energy Procedia 75:2871–2877. https://doi.org/10.1016/j.egypro.2015.07.576

    Article  CAS  Google Scholar 

  • Kuo C-R, Hsu S-W, Chang K-H, Wang C-C (2011) Analysis of a 50kW organic Rankine cycle system. Energy 36:5877–5885. https://doi.org/10.1016/j.energy.2011.08.035

    Article  CAS  Google Scholar 

  • Lee S-Y, Park S-J (2011) Effect of platinum doping of activated carbon on hydrogen storage behaviors of metal-organic frameworks-5. Int J Hydrogen Energy 36:8381–8387. https://doi.org/10.1016/j.ijhydene.2011.03.038

    Article  CAS  Google Scholar 

  • Lee H, Kang Y-S, Kim S-H, Lee J-Y (2002) Hydrogen desorption properties of multiwall carbon nanotubes with closed and open structures. Appl Phys Lett 80:577–579. https://doi.org/10.1063/1.1446208

    Article  CAS  Google Scholar 

  • Lestinsky P, Grycova B, Pryszcz A, Martaus A, Matejova L (2017) Hydrogen production from microwave catalytic pyrolysis of spruce sawdust. J Anal Appl Pyrolysis 124:175–179. https://doi.org/10.1016/j.jaap.2017.02.008

    Article  CAS  Google Scholar 

  • Levin DB, Chahine R (2010) Challenges for renewable hydrogen production from biomass. Int J Hydrogen Energy 35:4962–4969. https://doi.org/10.1016/j.ijhydene.2009.08.067

    Article  CAS  Google Scholar 

  • Li Y, Liu H (2021) Grand canonical Monte Carlo simulation on the hydrogen storage behaviors of the cup-stacked carbon nanotubes at room temperature. Int J Hydrogen Energy 46:6623–6631. https://doi.org/10.1016/j.ijhydene.2020.11.139

    Article  CAS  Google Scholar 

  • Li X, Zhu H, Ci L, Xu C, Mao Z, Wei B, Liang J, Wu D (2001) Hydrogen uptake by graphitized multi-walled carbon nanotubes under moderate pressure and at room temperature. Carbon 39:2077–2079. https://doi.org/10.1016/s0008-6223(01)00183-x

    Article  CAS  Google Scholar 

  • Li S, Xu S, Liu S, Yang C, Lu Q (2004) Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol 85:1201–1211. https://doi.org/10.1016/j.fuproc.2003.11.043

    Article  CAS  Google Scholar 

  • Li Y, Guo L, Zhang X, Jin H, Lu Y (2010) Hydrogen production from coal gasification in supercritical water with a continuous flowing system. Int J Hydrogen Energy 35:3036–3045. https://doi.org/10.1016/j.ijhydene.2009.07.023

    Article  CAS  Google Scholar 

  • Li X, Krooss BM, Weniger P, Littke R (2017) Molecular hydrogen (H2) and light hydrocarbon gases generation from marine and lacustrine source rocks during closed-system laboratory pyrolysis experiments. J Anal Appl Pyrolysis 126:275–287. https://doi.org/10.1016/j.jaap.2017.05.019

    Article  CAS  Google Scholar 

  • Lisowski E, Lisowski F (2019) Study on thermal insulation of liquefied natural gas cryogenic road tanker. Therm Sci 23:1381–1391. https://doi.org/10.2298/tsci19s4381l

    Article  Google Scholar 

  • Liu Z, Zhang F-S (2008) Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy Convers Manag 49:3498–3504. https://doi.org/10.1016/j.enconman.2008.08.009

    Article  CAS  Google Scholar 

  • Liu C, Chen Y, Wu C-Z et al (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455. https://doi.org/10.1016/j.carbon.2009.09.060

    Article  CAS  Google Scholar 

  • Lu W, Wei Z, Gu Z-Y, Liu T-F, Park J, Park J, Jian T, Zhang M, Zhang Q, Gentle T III, Bosch M, Zhou H-C (2014) Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 43:5561–5593. https://doi.org/10.1039/c4cs00003j

    Article  CAS  Google Scholar 

  • Lueking A, Yang RT (2003) Hydrogen storage in carbon nanotubes: residual metal content and pretreatment temperature. AIChE J 49:1556–1568. https://doi.org/10.1002/aic.690490619

    Article  CAS  Google Scholar 

  • Luo S, Xiao B, Guo X, Hu Z, Liu S, He M (2009) Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor: influence of particle size on gasification performance. Int J Hydrogen Energy 34:1260–1264. https://doi.org/10.1016/j.ijhydene.2008.10.088

    Article  CAS  Google Scholar 

  • Luo S, Fu J, Zhou Y, Yi C (2017a) The production of hydrogen-rich gas by catalytic pyrolysis of biomass using waste heat from blast-furnace slag. Renew Energy 101:1030–1036. https://doi.org/10.1016/j.renene.2016.09.072

    Article  CAS  Google Scholar 

  • Luo S, Guo J, Feng Y (2017b) Hydrogen-rich gas production from pyrolysis of wet sludge in situ steam agent. Int J Hydrogen Energy 42:18309–18314. https://doi.org/10.1016/j.ijhydene.2017.04.165

    Article  CAS  Google Scholar 

  • Ma L-P, Wu Z-S, Li J, Wu E-D, Ren W-C, Cheng H-M (2009) Hydrogen adsorption behavior of graphene above critical temperature. Int J Hydrogen Energy 34:2329–2332. https://doi.org/10.1016/j.ijhydene.2008.12.079

    Article  CAS  Google Scholar 

  • Ma L-J, Wang J, Han M, Jia J, Wu H-S, Zhang X (2019) Adsorption of multiple H2 molecules on the complex TiC6H6: an unusual combination of chemisorption and physisorption. Energy 171:315–325. https://doi.org/10.1016/j.energy.2019.01.018

    Article  CAS  Google Scholar 

  • Mahajan D, Tan K, Venkatesh T, Kileti P, Clayton CR (2022) Hydrogen blending in gas pipeline networks—a review. Energies 15:3582. https://doi.org/10.3390/en15103582

    Article  CAS  Google Scholar 

  • Marsh H (1987) Adsorption methods to study microporosity in coals and carbons—a critique. Carbon 25:49–58. https://doi.org/10.1016/0008-6223(87)90039-x

    Article  CAS  Google Scholar 

  • Mehrabi M, Parvin P, Reyhani A, Mortazavi SZ (2018) Hybrid laser ablation and chemical reduction to synthesize Ni/Pd nanoparticles decorated multi-wall carbon nanotubes for effective enhancement of hydrogen storage. Int J Hydrogen Energy 43:12211–12221. https://doi.org/10.1016/j.ijhydene.2018.04.144

    Article  CAS  Google Scholar 

  • Melikoglu M (2017) Geothermal energy in Turkey and around the World: a review of the literature and an analysis based on Turkey’s Vision 2023 energy targets. Renew Sustain Energy Rev 76:485–492. https://doi.org/10.1016/j.rser.2017.03.082

    Article  Google Scholar 

  • Moradi R, Groth KM (2019) Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis. Int J Hydrogen Energy 44:12254–12269. https://doi.org/10.1016/j.ijhydene.2019.03.041

    Article  CAS  Google Scholar 

  • Nami H, Ranjbar F, Yari M (2018) Thermodynamic assessment of zero-emission power, hydrogen and methanol production using captured CO2 from S-Graz oxy-fuel cycle and renewable hydrogen. Energy Convers Manag 161:53–65. https://doi.org/10.1016/j.enconman.2018.01.054

    Article  CAS  Google Scholar 

  • Nanda S, Berruti F (2020) Thermochemical conversion of plastic waste to fuels: a review. Environ Chem Lett 19:123–148. https://doi.org/10.1007/s10311-020-01094-7

    Article  CAS  Google Scholar 

  • Nanda S, Berruti F (2021) A technical review of bioenergy and resource recovery from municipal solid waste. J Hazard Mater 403:123970. https://doi.org/10.1016/j.jhazmat.2020.123970

    Article  CAS  Google Scholar 

  • Nanda S, Azargohar R, Dalai AK, Kozinski JA (2015) An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew Sustain Energy Rev 50:925–941. https://doi.org/10.1016/j.rser.2015.05.058

    Article  CAS  Google Scholar 

  • Nasser M, Megahed TF, Ookawara S, Hassan H (2022) A review of water electrolysis–based systems for hydrogen production using hybrid/solar/wind energy systems. Environ. Sci Pollut. Res. https://doi.org/10.1007/s11356-022-23323-y.

  • Ni M, Leung DYC, Leung MKH, Sumathy K (2006) An overview of hydrogen production from biomass. uel Process. Technol 87:461–472. https://doi.org/10.1016/j.fuproc.2005.11.003

    Article  CAS  Google Scholar 

  • Noorollahi Y, Shabbir MS, Siddiqi AF, Ilyashenko LK, Ahmadi E (2019) Review of two-decade geothermal energy development in Iran, benefits, challenges, and future policy. Geothermics 77:257–266. https://doi.org/10.1016/j.geothermics.2018.10.004

    Article  Google Scholar 

  • Norouzi O, Safari F, Jafarian S, Tavasoli A, Karimi A (2017) Hydrothermal gasification performance of Enteromorpha intestinalis as an algal biomass for hydrogen-rich gas production using Ru promoted Fe–Ni/γ-Al2O3 nanocatalysts. Energy Convers Manag 141:63–71. https://doi.org/10.1016/j.enconman.2016.04.083

    Article  CAS  Google Scholar 

  • O’Brien JE, Stoots CM, Herring JS et al (2010) High temperature electrolysis for hydrogen production from nuclear energy – TechnologySummary. In: www.osti.gov. Accessed 20 Apr 2024

  • Office of Energy Efficiency & Renewable Energy (2019) Hydrogen production processes. In: Energy.gov. https://www.energy.gov/eere/fuelcells/hydrogen-production-processes. Accessed 22 June 2024

  • Office of Energy Efficiency & Renewable Energy (2019) Safe use of hydrogen. In: Energy.gov. https://www.energy.gov/eere/fuelcells/safe-use-hydrogen. Accessed 22 June 2024

  • Okolie JA, Nanda S, Dalai AK, Berruti F, Kozinski JA (2020) A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renew Sustain Energy Rev 119:109546–109546. https://doi.org/10.1016/j.rser.2019.109546

    Article  CAS  Google Scholar 

  • Onwudili JA, Williams PT (2013) Hydrogen and methane selectivity during alkaline supercritical water gasification of biomass with ruthenium-alumina catalyst. Appl Catal B 132–133:70–79. https://doi.org/10.1016/j.apcatb.2012.11.033

    Article  CAS  Google Scholar 

  • Ozcan H, Dincer I (2016) Modeling of a new four-step magnesium–chlorine cycle with dry HCl capture for more efficient hydrogen production. Int J Hydrogen Energy 41:7792–7801. https://doi.org/10.1016/j.ijhydene.2015.11.177

    Article  CAS  Google Scholar 

  • Ozcan H, Dincer I (2018a) Energetic and exergetic performance comparisons of various flow sheet options of magnesium-chlorine cycle. Springer. https://doi.org/10.1007/978-3-319-62572-0_76

    Article  Google Scholar 

  • Ozcan H, Dincer I (2018b) Experimental investigation of an improved version of the four-step magnesium-chlorine cycle. Int J Hydrogen Energy 43:5808–5819. https://doi.org/10.1016/j.ijhydene.2017.08.038

    Article  CAS  Google Scholar 

  • Parikhani T, Gholizadeh T, Ghaebi H, Sadat SMS, Sarabi M (2019) Exergoeconomic optimization of a novel multigeneration system driven by geothermal heat source and liquefied natural gas cold energy recovery. J Clean Prod 209:550–571. https://doi.org/10.1016/j.jclepro.2018.09.181

    Article  CAS  Google Scholar 

  • Petri MC, Klickman AE, Hori M (2018) Hydrogen production options for water-cooled nuclear power plants. In: www.iaea.org. https://www.pub.iaea.org/MTCD/Meetings/PDFplus/2007/cn152/cn152p/Petri%20LWR%20H2%20IAEA%20conf%20040407. Accessed 18 Apr 2024

  • Pinsky R, Sabharwall P, Hartvigsen J, O’Brien J (2020) Comparative review of hydrogen production technologies for nuclear hybrid energy systems. Prog Nucl Energy 123:103317. https://doi.org/10.1016/j.pnucene.2020.103317

    Article  CAS  Google Scholar 

  • Posso F, Sánchez J, Espinoza JL, Siguencia J (2016) Preliminary estimation of electrolytic hydrogen production potential from renewable energies in Ecuador. Int J Hydrogen Energy 41:2326–2344. https://doi.org/10.1016/j.ijhydene.2015.11.155

    Article  CAS  Google Scholar 

  • Prinzhofer A, Moretti I, Françolin J, Pacheco C, D’Agostino A, Werly J, Rupin F (2019) Natural hydrogen continuous emission from sedimentary basins: the example of a Brazilian H2-emitting structure. Int J Hydrogen Energy 44:5676–5685. https://doi.org/10.1016/j.ijhydene.2019.01.119

    Article  CAS  Google Scholar 

  • Qinglan H, Chang W, Dingqiang L, Yao W, Dan L, Guiju L (2010) Production of hydrogen-rich gas from plant biomass by catalytic pyrolysis at low temperature. Int J Hydrogen Energy 35:8884–8890. https://doi.org/10.1016/j.ijhydene.2010.06.039

    Article  CAS  Google Scholar 

  • Quarton CJ, Tlili O, Welder L, Mansilla C, Blanco H, Heinrichs H, Leaver J, Samsatli NJ, Lucchese P, Robinus M, Samsatli S (2020) The curious case of the conflicting roles of hydrogen in global energy scenarios. Sustain Energy Fuels 4:80–95. https://doi.org/10.1039/c9se00833k

    Article  CAS  Google Scholar 

  • Rajaura RS, Srivastava S, Sharma PK, Mathur S, Shrivastava R, Sharma SS, Vijay YK (2018) Structural and surface modification of carbon nanotubes for enhanced hydrogen storage density. Nano-Struct Nano-Objects 14:57–65. https://doi.org/10.1016/j.nanoso.2018.01.005

    Article  CAS  Google Scholar 

  • Rakesh N, Dasappa S (2018) Analysis of tar obtained from hydrogen-rich syngas generated from a fixed bed downdraft biomass gasification system. Energy Convers Manag 167:134–146. https://doi.org/10.1016/j.enconman.2018.04.092

    Article  CAS  Google Scholar 

  • Ramazankhani M-E, Mostafaeipour A, Hosseininasab H, Fakhrzad M-B (2016) Feasibility of geothermal power assisted hydrogen production in Iran. Int J Hydrogen Energy 41:18351–18369. https://doi.org/10.1016/j.ijhydene.2016.08.150

    Article  CAS  Google Scholar 

  • Rampai MM, Mtshali CB, Seroka NS, Khotseng L (2024) Hydrogen production, storage, and transportation: recent advances. RSC Advances 14:6699–6718. https://doi.org/10.1039/D3RA08305E

    Article  CAS  Google Scholar 

  • Rana R, Nanda S, Reddy SN, Dalai AK, Kozinski JA, Gökalp I (2020) Catalytic gasification of light and heavy gas oils in supercritical water. J Energy Inst 93:2025–2032. https://doi.org/10.1016/j.joei.2020.04.018

    Article  CAS  Google Scholar 

  • Rashid MM, Al Mesfer MK, Naseem H, Danish M (2015) Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int J Eng Adv Technol 4(3):2249–8958

    Google Scholar 

  • Rather SU (2019) Hydrogen uptake of manganese oxide-multiwalled carbon nanotube composites. Int J Hydrogen Energy 44:325–331. https://doi.org/10.1016/j.ijhydene.2018.03.009

    Article  CAS  Google Scholar 

  • Rather SU (2020) Preparation, characterization and hydrogen storage studies of carbon nanotubes and their composites: a review. Int J Hydrogen Energy 45:4653–4672. https://doi.org/10.1016/j.ijhydene.2019.12.055

    Article  CAS  Google Scholar 

  • Raveendran A, Chandran M, Dhanusuraman R (2023) A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Adv 13:3843–3876. https://doi.org/10.1039/d2ra07642j

    Article  CAS  Google Scholar 

  • Reddi K, Mintz M, Elgowainy A, Sutherland E (2016) Building a hydrogen infrastructure in the United States. In: Compend Hydrog Energy p. 293–319. https://doi.org/10.1016/B978-1-78242-364-5.00013-0.

  • Reitenbach V, Ganzer L, Albrecht D, Hagemann B (2015) Influence of added hydrogen on underground gas storage: a review of key issues. Environ Earth Sci 73:6927–6937. https://doi.org/10.1007/s12665-015-4176-2

    Article  CAS  Google Scholar 

  • Revankar S (2019) Nuclear Hydrogen Production. Storage and Hybridization of Nuclear Energy 49–117. https://doi.org/10.1016/B978-0-12-813975-2.00004-1

  • Ruffini E, Wei M (2018) Future costs of fuel cell electric vehicles in California using a learning rate approach. Energy 150:329–341. https://doi.org/10.1016/j.energy.2018.02.071

    Article  Google Scholar 

  • Runcheng X, Yi L, Tao B, Yong Y, Kun D, Zhibon Y (2015) Supercritical water gasification of petrochemical wastewater for hydrogen production. Environ Prog Sustain Energy 35:428–432. https://doi.org/10.1002/ep.12253

    Article  CAS  Google Scholar 

  • Safari F, Javani N, Yumurtaci Z (2018) Hydrogen production via supercritical water gasification of almond shell over algal and agricultural hydrochars as catalysts. Int J Hydrogen Energy 43:1071–1080. https://doi.org/10.1016/j.ijhydene.2017.05.102

    Article  CAS  Google Scholar 

  • Saithong N, Authayanun S, Patcharavorachot Y, Arpornwichanop A (2019) Thermodynamic analysis of the novel chemical looping process for two-grade hydrogen production with CO2 capture. Energy Convers Manag 180:325–337. https://doi.org/10.1016/j.enconman.2018.11.003

    Article  CAS  Google Scholar 

  • Santana KVR, Apolônio FCSO, Wisniewski A (2019) Valorization of cattle manure by thermoconversion process in a rotary kiln reactor to produce environmentally friendly products. Bioenergy Res 13:605–617. https://doi.org/10.1007/s12155-019-10047-0

    Article  CAS  Google Scholar 

  • Sarmah MK, Singh T, Kalita P, Dewan A (2023) Sustainable hydrogen generation and storage – a review. RSC Adv 13:25253–25275. https://doi.org/10.1039/d3ra04148d

    Article  CAS  Google Scholar 

  • Sasaki K, Li H-W, Hayashi A, Yamabe J, Ogura T, Lyth SM (2016) Hydrogen energy engineering: a Japanese perspective. Springer Japan Tokyo. https://doi.org/10.1007/978-4-431-56042-5

    Article  Google Scholar 

  • Schiebahn S, Grube T, Robinius M, Tietze V, Kumar B, Stolten D (2015) Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany. Int J Hydrogen Energy 40:4285–4294. https://doi.org/10.1016/j.ijhydene.2015.01.123

    Article  CAS  Google Scholar 

  • Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, Petrich G, Sadri E, Schacht M (2000) Hydrothermal gasification of biomass and organic wastes. J Supercrit Fluids 17:145–153. https://doi.org/10.1016/s0896-8446(99)00051-0

    Article  CAS  Google Scholar 

  • Seif S, Tavakoli O, Fatemi S, Bahmanyar H (2015) Subcritical water gasification of beet-based distillery wastewater for hydrogen production. J Supercrit Fluids 104:212–220. https://doi.org/10.1016/j.supflu.2015.06.014

    Article  CAS  Google Scholar 

  • Seif S, Fatemi S, Tavakoli O, Bahmanyar H (2016) Hydrogen production through hydrothermal gasification of industrial wastewaters using transition metal oxide catalysts. J Supercrit Fluids 114:32–45. https://doi.org/10.1016/j.supflu.2016.03.028

    Article  CAS  Google Scholar 

  • Shahbaz M, Yusup S, Inayat A, Patrick DO, Ammar M (2017) The influence of catalysts in biomass steam gasification and catalytic potential of coal bottom ash in biomass steam gasification: a review. Renew Sustain Energy Rev 73:468–476. https://doi.org/10.1016/j.rser.2017.01.153

    Article  CAS  Google Scholar 

  • Shenbagabalakrishnan B, Gayathri V (2014) Structure induced hydrogen storage in carbon and boron nanostructures. Int J ChemTech Res 6:2110–2112

    CAS  Google Scholar 

  • Shet SP, Sudhakar K, Priya SS, Tahir M (2021) A review on current trends in potential use of metal-organic framework for hydrogen storage. Int J Hydrogen Energy 46:11782–11803. https://doi.org/10.1016/j.ijhydene.2021.01.020

    Article  CAS  Google Scholar 

  • Siddiqui O, Ishaq H, Dincer I (2019) A novel solar and geothermal-based trigeneration system for electricity generation, hydrogen production and cooling. Energy Convers Manag 198:111812. https://doi.org/10.1016/j.enconman.2019.111812

    Article  CAS  Google Scholar 

  • Silveira JL, Springer International Publishing (2018) Sustainable Hydrogen Production Processes Energy, Economic and Ecological Issues. Cham Springer International Publishing Springer. https://doi.org/10.1007/978-3-319-41616-8

  • Simpson M, Herrmann S, Boyle B (2006) A hybrid thermochemical electrolytic process for hydrogen production based on the reverse Deacon reaction. Int J Hydrogen Energy 31:1241–1246. https://doi.org/10.1016/j.ijhydene.2005.08.014

    Article  CAS  Google Scholar 

  • Singh RS, Solanki A (2016) Hydrogen adsorption in metal-decorated silicon carbide nanotubes. Chem Phys Lett 660:155–159. https://doi.org/10.1016/j.cplett.2016.08.021

    Article  CAS  Google Scholar 

  • Siracusano S, Trocino S, Briguglio N, Bagilo V, Arićo AS (2018) Electrochemical impedance spectroscopy as a diagnostic tool in polymer electrolyte membrane electrolysis. Materials 11:1368. https://doi.org/10.3390/ma11081368

    Article  CAS  Google Scholar 

  • Somtochukwu GN, Darko CK, Obiako PC, Kuang B, Sun X, Jenkins K (2023) A comparative analysis of different hydrogen production methods and their environmental impact. Clean Technol 5:1344–1380. https://doi.org/10.3390/cleantechnol5040067

    Article  Google Scholar 

  • Staples MD, Malina R, Barrett SRH (2017) The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nature Energy 2: https://doi.org/10.1038/nenergy.2016.202.

  • Stolten D, Samsun RC, Garland N (2016) Fuel cells: data, facts and figures. https://doi.org/10.1002/9783527693924.

  • Ströbel R, Garche J, Moseley PT, Jörissen L, Wolf G (2006) Hydrogen storage by carbon materials. J Power Sources 159:781–801. https://doi.org/10.1016/j.jpowsour.2006.03.047

    Article  CAS  Google Scholar 

  • Suh MP, Park HJ, Prasad TK, Lim D-W (2011) Hydrogen storage in metal–organic frameworks. Chem Rev 112:782–835. https://doi.org/10.1021/cr200274s

    Article  CAS  Google Scholar 

  • Suleman F, Dincer I, Agelin-Chaab M (2014) Development of an integrated renewable energy system for multigeneration. Energy 78:196–204. https://doi.org/10.1016/j.energy.2014.09.082

    Article  Google Scholar 

  • Thanh HV, Dai Z, Du Z, Yin H, Yan B, Soltanian MR, Xiao T, McPherson B, Abualigah L (2024a) Artificial intelligence-based prediction of hydrogen adsorption in various kerogen types: implications for underground hydrogen storage and cleaner production. Int J Hydrogen Energy 57:1000–1009. https://doi.org/10.1016/j.ijhydene.2024.01.115

    Article  CAS  Google Scholar 

  • Thanh HV, Zhang H, Dai Z, Zhang T, Tangparitkul S, Min B (2024b) Data-driven machine learning models for the prediction of hydrogen solubility in aqueous systems of varying salinity: implications for underground hydrogen storage. Int J Hydrogen Energy 55:1422–1433. https://doi.org/10.1016/j.ijhydene.2023.12.131

    Article  CAS  Google Scholar 

  • Thema M, Bauer F, Sterner M (2019) Power-to-gas: electrolysis and methanation status review. Renew Sustain Energy Rev 112:775–787. https://doi.org/10.1016/j.rser.2019.06.030

    Article  CAS  Google Scholar 

  • Thornton AW, Simon CM, Kim J et al (2017) Materials genome in action: identifying the performance limits of physical hydrogen storage. Chem Mater 29:2844–2854. https://doi.org/10.1021/acs.chemmater.6b04933

    Article  CAS  Google Scholar 

  • Töpler J, Lehmann J (2016) Hydrogen and fuel cell. Springer Nature. https://doi.org/10.1007/978-3-662-44972-1

    Article  Google Scholar 

  • Tozzini V, Pellegrini V (2013) Prospects for hydrogen storage in graphene. Phys Chem Chem Phys 15:80–89. https://doi.org/10.1039/C2CP42538F

    Article  CAS  Google Scholar 

  • Turn S (1998) An experimental investigation of hydrogen production from biomass gasification. Int J Hydrogen Energy 23:641–648. https://doi.org/10.1016/s0360-3199(97)00118-3

    Article  CAS  Google Scholar 

  • Unverdi M, Cerci Y (2013) Performance analysis of Germencik Geothermal Power Plant. Energy 52:192–200. https://doi.org/10.1016/j.energy.2012.12.052

    Article  Google Scholar 

  • Valliyappan T, Bakhshi NN, Dalai AK (2008) Pyrolysis of glycerol for the production of hydrogen or syn gas. Bioresour Technol 99:4476–4483. https://doi.org/10.1016/j.biortech.2007.08.069

    Article  CAS  Google Scholar 

  • Vellingiri L, Annamalai K, Kandasamy R, Kombiah I (2018) Characterization and hydrogen storage properties of SnO2 functionalized MWCNT nanocomposites. Int J Hydrogen Energy 43:10396–10409. https://doi.org/10.1016/j.ijhydene.2018.04.120

    Article  CAS  Google Scholar 

  • Verheul B (n.d.) Overview of hydrogen and fuel cell developments in China. In: www.linkedin.com. https://www.linkedin.com/pulse/overview-hydrogen-fuel-cell-developments-china-anouk-van-der-steen/. Accessed 18 Apr 2024

  • Veziroğlu TN, Şahi NS (2008) 21st Century’s energy: hydrogen energy system. Energy Conversion and Management 49:1820–1831. https://doi.org/10.1016/j.enconman.2007.08.015

    Article  CAS  Google Scholar 

  • Wang L, Weller CL, Jones DD, Hanna MA (2008) Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass Bioenergy 32:573–581. https://doi.org/10.1016/j.biombioe.2007.12.007

    Article  CAS  Google Scholar 

  • Wang Y, Wang K, Guan C, He Z, Lu Z, Chen T, Liu J, Tan X, Yang Tan TT, Li CM (2011) Surface functionalization-enhanced spillover effect on hydrogen storage of Ni–B nanoalloy-doped activated carbon. Int J Hydrogen Energy 36:13663–13668. https://doi.org/10.1016/j.ijhydene.2011.08.049

    Article  CAS  Google Scholar 

  • Wang C, Zhu W, Gong M, Su Y, Fan Y (2017) Influence of H2O2 and Ni catalysts on hydrogen production and PAHs inhibition from the supercritical water gasification of dewatered sewage sludge. J Supercrit Fluids 130:183–188. https://doi.org/10.1016/j.supflu.2017.08.009

    Article  CAS  Google Scholar 

  • Wang Y, Lan Z, Huang X, Liu H, Guo J (2019) Study on catalytic effect and mechanism of MOF (MOF = ZIF-8, ZIF-67, MOF-74) on hydrogen storage properties of magnesium. Int J Hydrogen Energy 44:28863–28873. https://doi.org/10.1016/j.ijhydene.2019.09.110

    Article  CAS  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314. https://doi.org/10.1016/s0009-2541(99)00092-3

    Article  CAS  Google Scholar 

  • Williams PT, Besler S (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energy 7:233–250. https://doi.org/10.1016/0960-1481(96)00006-7

    Article  CAS  Google Scholar 

  • Williams PT, Onwudili J (2006) Subcritical and Supercritical Water Gasification of Cellulose, Starch, Glucose, and Biomass Waste. Energy Fuels 20:1259–1265. https://doi.org/10.1021/ef0503055

    Article  CAS  Google Scholar 

  • Witkowski A, Rusin A, Majkut M, Stolecka K (2018) Analysis of compression and transport of the methane/hydrogen mixture in existing natural gas pipelines. Int J Press Vessels Pip 166:24–34. https://doi.org/10.1016/j.ijpvp.2018.08.002

    Article  CAS  Google Scholar 

  • Witman M, Ling S, Gładysiak A, Stylianou KC, Smit B, Slater B, Haranczyk M (2017) Rational design of a low-cost, high-performance metal–organic framework for hydrogen storage and carbon capture. J Phys Chem C 121:1171–1181. https://doi.org/10.1021/acs.jpcc.6b10363

    Article  CAS  Google Scholar 

  • Wong-Foy AG, Matzger AJ, Yaghi OM (2006) Exceptional H2 saturation uptake in microporous metal-organic frameworks. J Am Chem Soc 128:3494–3495. https://doi.org/10.1021/ja058213h

    Article  CAS  Google Scholar 

  • Wu C, Wang L, Williams PT, Shi J, Huang J (2011) Hydrogen production from biomass gasification with Ni/MCM-41 catalysts: influence of Ni content. Appl Catal B 108–109:6–13. https://doi.org/10.1016/j.apcatb.2011.07.023

    Article  CAS  Google Scholar 

  • Wu X, Zhang H, Yang M, Jia W, Qiu Y, Lan L (2022) From the perspective of new technology of blending hydrogen into natural gas pipelines transmission: mechanism, experimental study, and suggestions for further work of hydrogen embrittlement in high-strength pipeline steels. Int J Hydrogen Energy 47:8071–8090. https://doi.org/10.1016/j.ijhydene.2021.12.108

    Article  CAS  Google Scholar 

  • Wwi L, Xu S, Zhang L, Liu C, Zhu H, Liu S (2007) Steam gasification of biomass for hydrogen-rich gas in a free-fall reactor. Int J Hydrogen Energy 32:24–31. https://doi.org/10.1016/j.ijhydene.2006.06.002

    Article  CAS  Google Scholar 

  • Xu W, Takahashi K, Matsuo Y, Hattori Y, Kumagai M, Ishiyama S, Kaneko K, Iijima S (2007) Investigation of hydrogen storage capacity of various carbon materials. Int J Hydrogen Energy 32:2504–2512. https://doi.org/10.1016/j.ijhydene.2006.11.012

    Article  CAS  Google Scholar 

  • Xu ZR, Zhu W, Htar SH (2012) Partial oxidative gasification of municipal sludge in subcritical and supercritical water. Environ Technol 33:1217–1223. https://doi.org/10.1080/09593330.2011.618933

    Article  CAS  Google Scholar 

  • Xu ZR, Zhu W, Gong M, Zhang HW (2013) Direct gasification of dewatered sewage sludge in supercritical water. Part 1: Effects of alkali salts. Int J Hydrogen Energy 38:3963–3972. https://doi.org/10.1016/j.ijhydene.2013.01.164

    Article  CAS  Google Scholar 

  • Yakaboylu O, Harinck J, Smit K, de Jong W (2015) Supercritical water gasification of biomass: a literature and technology overview. Energies 8:859–894. https://doi.org/10.3390/en8020859

    Article  CAS  Google Scholar 

  • Yan B, Wu J, Xie C, He F, Wei C (2009) Supercritical water gasification with Ni/ZrO2 catalyst for hydrogen production from model wastewater of polyethylene glycol. J Supercrit Fluids 50:155–161. https://doi.org/10.1016/j.supflu.2009.04.015

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Liang DT, Zheng C (2006) Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases. Fuel Process Technol 87:935–942. https://doi.org/10.1016/j.fuproc.2006.07.001

    Article  CAS  Google Scholar 

  • Yang J, Sudik A, Wolverton C, Siegel DJ (2010) High capacity hydrogenstorage materials: attributes for automotive applications and techniques for materials discovery. Chem Soc Rev 39:656–675. https://doi.org/10.1039/b802882f

    Article  CAS  Google Scholar 

  • Yang M, Hunger R, Berrettoni S, Sprecher B, Wang B (2023) A review of hydrogen storage and transport technologies. Clean Energy 7:190–216. https://doi.org/10.1093/ce/zkad021

    Article  Google Scholar 

  • Yao D, Hu Q, Wang D, Yang H, Wu C, Wang X, Chen H (2016) Hydrogen production from biomass gasification using biochar as a catalyst/support. Bioresour Technol 216:159–164. https://doi.org/10.1016/j.biortech.2016.05.011

    Article  CAS  Google Scholar 

  • Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler AG, Colbert D, Smith KA, Smalley RE (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl Phys Lett 74:2307–2309. https://doi.org/10.1063/1.123833

    Article  CAS  Google Scholar 

  • Yildirir E, Ballice L (2019) Supercritical water gasification of wet sludge from biological treatment of textile and leather industrial wastewater. J Supercrit Fluids 146:100–106. https://doi.org/10.1016/j.supflu.2019.01.012

    Article  CAS  Google Scholar 

  • Yildiz B, Kazimi M (2006) Efficiency of hydrogen production systems using alternative nuclear energy technologies. Int J Hydrogen Energy 31:77–92. https://doi.org/10.1016/j.ijhydene.2005.02.009

    Article  CAS  Google Scholar 

  • Yilmaz C, Kanoglu M, Abusoglu A (2015) Thermoeconomic cost evaluation of hydrogen production driven by binary geothermal power plant. Geothermics 57:18–25. https://doi.org/10.1016/j.geothermics.2015.05.005

    Article  Google Scholar 

  • Youssef EA, Elbeshbishy E, Hafez H, Nakhla G, Charpentier P (2010) Sequential supercritical water gasification and partial oxidation of hog manure. Int J Hydrogen Energy 35:11756–11767. https://doi.org/10.1016/j.ijhydene.2010.08.097

    Article  CAS  Google Scholar 

  • Yukesh Kannah R, Merrylin J, Poornima Devi T, Kavitha S, Sivashanmugam P, Kumar G, Banu JR (2020) Food waste valorization: biofuels and value-added product recovery. Bioresour Technol Rep 11:100524. https://doi.org/10.1016/j.biteb.2020.100524

    Article  Google Scholar 

  • Yuksel YE, Ozturk M, Dincer I (2018) Thermodynamic analysis and assessment of a novel integrated geothermal energy-based system for hydrogen production and storage. Int J Hydrogen Energy 43:4233–4243. https://doi.org/10.1016/j.ijhydene.2017.08.137

    Article  CAS  Google Scholar 

  • Yusaf T, Faisal Mahamude AS, Kadirgama K, Ramasamy D, Farhana K, Dhahad HA (2023) Sustainable hydrogen energy in aviation – a narrative review. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.02.086

    Article  Google Scholar 

  • Zagrodnik R, Laniecki M (2015) The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation. Bioresour Technol 194:187–195. https://doi.org/10.1016/j.biortech.2015.07.028

    Article  CAS  Google Scholar 

  • Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326. https://doi.org/10.1016/j.pecs.2009.11.002

    Article  CAS  Google Scholar 

  • Zeng J, Xiao R, Zhang H, Wang Y, Zeng D, Ma Z (2017) Chemical looping pyrolysis-gasification of biomass for high H2/CO syngas production. Fuel Process Technol 168:116–122. https://doi.org/10.1016/j.fuproc.2017.08.036

    Article  CAS  Google Scholar 

  • Zhan L, Li K, Wang Y, Meng Q, Lv C, Ling L (2002) A linear comprehensive adsorption model of hydrogen on super activated carbon under supercritical conditions. J Colloid Interface Sci 250:63–66. https://doi.org/10.1006/jcis.2002.8275

    Article  CAS  Google Scholar 

  • Zhan L, Li KX, Zhang R, Liu QF, Lü CHX, Ling LCH (2004) Improvements of the DA equation for application in hydrogen adsorption at supercritical conditions. J Supercrit Fluids 28:37–45. https://doi.org/10.1016/s0896-8446(03)00003-2

    Article  CAS  Google Scholar 

  • Zhang J-P, Chen X-M (2008) Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework. J Am Chem Soc 130:6010–6017. https://doi.org/10.1021/ja800550a

    Article  CAS  Google Scholar 

  • Zhang J-P, Lin Y-Y, Huang X-C, Chen X-M (2005) Copper(I) 1,2,4-triazolates and related complexes: studies of the solvothermal ligand reactions, network topologies, and photoluminescence properties. J Am Chem Soc 127:5495–5506. https://doi.org/10.1021/ja042222t

    Article  CAS  Google Scholar 

  • Zhang L, Xu C, Champagne P (2010) Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment. Bioresour Technol 101:2713–2721. https://doi.org/10.1016/j.biortech.2009.11.106

    Article  CAS  Google Scholar 

  • Zhang L, Champagne P, Xu C (2011) Supercritical water gasification of an aqueous by-product from biomass hydrothermal liquefaction with novel Ru modified Ni catalysts. Bioresour Technol 102:8279–8287. https://doi.org/10.1016/j.biortech.2011.06.051

    Article  CAS  Google Scholar 

  • Zhang H, Li J, Su Y, Wang P, Yu B (2021) Effects of hydrogen blending on hydraulic and thermal characteristics of natural gas pipeline and pipe network. Oil Gas Sci Technol 76:70. https://doi.org/10.2516/ogst/2021052

    Article  CAS  Google Scholar 

  • Zhao W, Fierro V, Fernández-Huerta N, Izquierdo MT, Celzard A (2012) Impact of synthesis conditions of KOH activated carbons on their hydrogen storage capacities. Int J Hydrogen Energy 37:14278–14284. https://doi.org/10.1016/j.ijhydene.2012.06.110

    Article  CAS  Google Scholar 

  • Zhou D, Yan S, Huang D, Shao T, Xiao W, Hao J, Wang C, Yu T (2022) Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes. Energy 239:121629. https://doi.org/10.1016/j.energy.2021.121629

    Article  CAS  Google Scholar 

  • Zhu A-X, Lin J-B, Zhang J-P, Chen X-M (2009) Isomeric zinc(II) triazolate frameworks with 3-connected networks: syntheses, structures, and sorption properties. Inorg Chem 48:3882–3889. https://doi.org/10.1021/ic802446m

    Article  CAS  Google Scholar 

  • Zohuri B (2019) Cryogenics and liquid hydrogen storage. In: Hydrog. Energy; p. 121–139. https://doi.org/10.1007/978-3-319-93461-7_4.