synthesis,-crystal-structure,-photophysical-properties,-and-antibacterial-activities-of-the-copper(ii)-complex-derived-…-–-springer

Synthesis, Crystal Structure, Photophysical Properties, and Antibacterial Activities of the Copper(II) Complex Derived … – Springer

REFERENCES

  1. A. Gusev, E. Braga, V. Shul′gin, K. Lyssenko, I. Eremenko, L. Samsonova, K. Degtyarenko, T. Kopylova, and W. Linert. Luminescent properties of Zn and Mg complexes on N-(2-carboxyphenyl)salicylidenimine basis. Materials, 2017, 10(8), 897. https://doi.org/10.3390/ma10080897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. W. Jeevadason, K. K. Murugavel, and M. A. Neelakantan. Review on Schiff bases and their metal complexes as organic photovoltaic materials. Renew. Sustain. Energy Rev., 2014, 36, 220-227. https://doi.org/10.1016/j.rser.2014.04.060

    Article  CAS  Google Scholar 

  3. M. Montazerozohori, S. A. Musavi, A. Masoudiasl, A. Hojjati, and A. Assoud. DFT study and crystal structure analysis of a new nano-structure five coordinated Hg(II) complex involving C–H⋯O, N⋯O and π⋯π interactions in a supra-molecular structure. Spectrochim. Acta, Part A, 2015, 147, 139-150. https://doi.org/10.1016/j.saa.2015.03.028

    Article  CAS  PubMed  Google Scholar 

  4. M. Rezaeivala, R. Golbedaghi, and M. Khalili. Coordination chemistry of some new Cu(II), Ni(II) and Co(II) macroacyclic (N2O4) Schiff base complexes: X-ray crystal structure of Cu(II) complex. Russ. J. Coord. Chem., 2016, 42(1), 66-70. https://doi.org/10.1134/s1070328415120064

    Article  CAS  Google Scholar 

  5. M. A. Diab, A. K. El-Sayed, M. I. Abou-Dobara, H. R. Issa, and A. Z. El-Sonbati. Polymer complexes: LXXX – Characterization, DNA cleavage properties, antimicrobial activity and molecular docking studies of transition metal complexes of Schiff base. J. Iran. Chem. Soc., 2023, 20(6), 1283-1305. https://doi.org/10.1007/s13738-023-02755-4

    Article  CAS  Google Scholar 

  6. H. Bahron, S. S. Khaidir, A. M. Tajuddin, K. Ramasamy, and B. M. Yamin. Synthesis, characterization and anticancer activity of mono- and dinuclear Ni(II) and Co(II) complexes of a Schiff base derived from o-vanillin. Polyhedron, 2019, 161, 84-92. https://doi.org/10.1016/j.poly.2018.12.055

    Article  CAS  Google Scholar 

  7. M. Shabbir, I. Ahmad, H. Ismail, S. Ahmed, V. McKee, Z. Akhter, and B. Mirza. Pharmacological, electrochemical and drug–DNA interaction aspects of tridentate Schiff bases and their triphenylphosphine nickel(II) complexes. Polyhedron, 2017, 133, 270-278. https://doi.org/10.1016/j.poly.2017.05.046

    Article  CAS  Google Scholar 

  8. S. Pandiarajan, N. Hajarabeevi, R. R. Shaikh, S. Raghunathan, and D. MubarakAli. Synthesis and characterization of novel Schiff bases derived from 2-butyl-4-chloro imidazole for the enhanced antimicrobial property. Appl. Biochem. Biotechnol., 2023, 195(1), 253-263. https://doi.org/10.1007/s12010-022-04112-2

    Article  CAS  PubMed  Google Scholar 

  9. M. Pavlović, E. Kahrović, S. Aranđelović, S. Radulović, P.-P. Ilich, S. Grgurić-Šipka, N. Ljubijankić, D. Žilić, and J. Jurec. Tumor selective Ru(III) Schiff bases complexes with strong in vitro activity toward cisplatin-resistant MDA-MB-231 breast cancer cells. JBIC, J. Biol. Inorg. Chem., 2023, 28(3), 263-284. https://doi.org/10.1007/s00775-023-01989-0

    Article  CAS  PubMed  Google Scholar 

  10. A. Ramesh, R. Pawar, P. Shyam, and A. Ramachandraiah. Synthesis, DFT calculations and biological activity of a new Schiff base of 4-aminoantipyrine and its Co(II), Ni(II), Cu(II) and Zn(II) complexes and crystal structure of the Schiff base. Res. Chem. Intermed., 2021, 47(11), 4673-4697. https://doi.org/10.1007/s11164-021-04552-1

    Article  CAS  Google Scholar 

  11. A. V. Topchiev, V. V. Korshak, U. A. Popov, and L. D. Rosénstein. Synthesis and study of the photoelectric properties of polyazines and schiff polybases. J. Polym. Sci., Part C: Polym. Symp., 1963, 4(2), 1305-1313. https://doi.org/10.1002/polc.5070040243

    Article  Google Scholar 

  12. H. Gupta, K. Kaur, R. Singh, and V. Kaur. Chitosan Schiff base for the spectrofluorimetric analysis of E-waste toxins: Pentabromophenol, Fe3+, and Cu2+ ions. Cellulose, 2023, 30(3), 1381-1397. https://doi.org/10.1007/s10570-022-04966-z

    Article  CAS  Google Scholar 

  13. A. Jabbari, M. Nikoorazm, and P. Moradi. Two Schiff-base complexes of cadmium and manganese on modified MCM-41 as practical, recyclable and selective nanocatalysts for the synthesis of sulfoxides. J. Porous Mater., 2023, 30(4), 1395-1402. https://doi.org/10.1007/s10934-023-01427-1

    Article  CAS  Google Scholar 

  14. A. Gusev, E. Braga, A. Tyutyunik, V. Gurchenko, M. Berezovskaya, M. Kryukova, M. Kiskin, and W. Linert. Synthesis, photoluminescence and electrical study of pyrazolone-based azomethine ligand Zn(II) complexes. Materials, 2020, 13(24), 5698. https://doi.org/10.3390/ma13245698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. W. H. Mahmoud, R. G. Deghadi, and G. G. Mohamed. Novel Schiff base ligand and its metal complexes with some transition elements. Synthesis, spectroscopic, thermal analysis, antimicrobial and in vitro anticancer activity. Appl. Organomet. Chem., 2016, 30(4), 221-230. https://doi.org/10.1002/aoc.3420

    Article  CAS  Google Scholar 

  16. M. Dolaz and M. Kose. The metal complexes of new Schiff bases containing phosphonate groups and catalytic properties for alkane oxidation. Appl. Organomet. Chem., 2019, 33(8). https://doi.org/10.1002/aoc.4970

    Article  Google Scholar 

  17. F. T. Elmali. Synthesis, characterization and DNA binding properties of Schiff base derivatives and Ru(II) complexes. J. Mol. Struct., 2022, 1261, 132900. https://doi.org/10.1016/j.molstruc.2022.132900

    Article  CAS  Google Scholar 

  18. S. Yadamani, A. Neamati, M. Homayouni-Tabrizi, S. Yadamani, A. Javdani-Mallak, and S. A. Beyramabadi. Anticancer activities of Cu(II) complex-Schiff base and low-frequency electromagnetic fields and the interaction between Cu(II) complex-Schiff base with bovine serum albumin by spectroscopy. Appl. Biochem. Biotechnol., 2020, 190(3), 997-1009. https://doi.org/10.1007/s12010-019-03118-7

    Article  CAS  PubMed  Google Scholar 

  19. A. Z. El-Sonbati, W. H. Mahmoud, G. G. Mohamed, M. A. Diab, S. M. Morgan, and S. Y. Abbas. Synthesis, characterization of Schiff base metal complexes and their biological investigation. Appl. Organomet. Chem., 2019, 33(9). https://doi.org/10.1002/aoc.5048

    Article  Google Scholar 

  20. S. E.-D. H. Etaiw and M. M. El-Bendary. Silver(I) 3-D-supramolecular coordination frameworks constructed by the combination of coordination bonds and supramolecular interactions. J. Coord. Chem., 2010, 63(6), 1038-1051. https://doi.org/10.1080/00958971003695529

    Article  CAS  Google Scholar 

  21. L. Zheng, A. Zhou, C. Liao, X. Huang, P. Chen, and S. Hu. Coordination-directed and Hydrogen-bonded assembly of supramolecular architectures constructed from diverse coordination of linear, triangular, tetragonal pyramid, trigonal bipyramid, and octahedral mononuclear units. Z. Anorg. Allg. Chem., 2018, 644(18), 1084-1090. https://doi.org/10.1002/zaac.201800022

    Article  CAS  Google Scholar 

  22. L.-N. Dong, Y. Tian, X. Li, and Y. Jiang. 3-D frameworks assembled by lanthanide dimers with 1,4-cyclohexanedicarboxylic acid and 1,10-phenanthroline via hydrogen bonds and π–π stacking interactions. J. Coord. Chem., 2010, 63(12), 2088-2096. https://doi.org/10.1080/00958972.2010.498911

    Article  CAS  Google Scholar 

  23. G. B. Xiao, Z. H. Fang, and X. Q. Yao. A new cadmium(II) coordination polymer extended through hydrogen bonds and π–π stacking interactions: synthesis and photoluminescence property. Chin. J. Struct. Chem., 2018, 37(12), 150-156. https://doi.org/10.14102/j.cnki.0254-5861.2011-2008

  24. G. M. Sheldrick. SHELXTL, Version 5.1: Software Reference Manual. Madison, WI, USA: Bruker AXS, 1997.

  25. G. M. Sheldrick. SHELXL-97, Program for Crystal Structure Refinement. Göttingen, Germany: University of Göttingen, 1997.

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision A.1. Wallingford, CT, USA: Gaussian, 2009.

  27. P. Geerlings, F. De Proft, and W. Langenaeker. Conceptual density functional theory. ChemInform, 2003, 34(29), 29289. https://doi.org/10.1002/chin.200329289

    Article  Google Scholar 

  28. C. Janiak. ChemInform abstract: A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. ChemInform, 2001, 32(11), 11252. https://doi.org/10.1002/chin.200111252

    Article  Google Scholar 

  29. Y. Guo, X. Hu, X. Zhang, X. Pu, and Y. Wang. The synthesis of a Cu(II) Schiff base complex using a bidentate N2O2 donor ligand: crystal structure, photophysical properties, and antibacterial activities. RSC Adv., 2019, 9(71), 41737-41744. https://doi.org/10.1039/c9ra07298e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. X.-L. Zhang. Synthesis, crystal structures, and antibacterial activities of manganese(II) and copper(II) complexes derived from 2-bromo-4-chloro-6-[(2-hydroxyethylimino)methyl]phenol. Inorg. Nano-Met. Chem., 2017, 47(1), 105-109. https://doi.org/10.1080/15533174.2016.1149729

    Article  CAS  Google Scholar 

  31. A. K. Patel. Syntheses, Crystal Structures, Magneto-Structural Correlation and Biomimetic Study of Copper(II) Complexes. Vadodara, Gujarat, India: Maharaja Sayajirao University of Baroda, 2021.

  32. D. Tomczyk, L. Nowak, W. Bukowski, K. Bester, P. Urbaniak, G. Andrijewski, and B. Olejniczak. Reductive and oxidative electrochemical study and spectroscopic properties of nickel(II) complexes with N2O2 Schiff bases derived from (±)-trans-N,N′-bis(salicylidene)-1,2-cyclohexanediamine. Electrochim. Acta, 2014, 121, 64-77. https://doi.org/10.1016/j.electacta.2013.12.073

    Article  CAS  Google Scholar 

  33. A. Ourari, I. Bougossa, S. Bouacida, D. Aggoun, R. Ruiz-Rosas, E. Morallon, and H. Merazig. Synthesis, characterization and X-ray crystal structure of novel nickel Schiff base complexes and investigation of their catalytic activity in the electrocatalytic reduction of alkyl and aryl halides. J. Iran. Chem. Soc., 2017, 14(3), 703-715. https://doi.org/10.1007/s13738-016-1022-8

    Article  CAS  Google Scholar 

  34. X. Hu, Y. Guo, D. Wang, X. Pu, and Q. Chen. Triazine-containing blue emitting Hyperbranched polyamide with donor-acceptor architecture: Synthesis, characterization, optoelectronic properties, and sensing behaviors toward ferric ions. J. Polym. Res., 2018, 25(3), 67. https://doi.org/10.1007/s10965-018-1456-z

    Article  CAS  Google Scholar 

  35. M. K. Ghosh, S. Pathak, and T. K. Ghorai. Synthesis of two mononuclear schiff base metal (M = Fe, Cu) complexes: MOF structure, dye degradation, H2O2 sensing, and DNA binding property. ACS Omega, 2019, 4(14), 16068-16079. https://doi.org/10.1021/acsomega.9b02268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references