REFERENCES
-
A. Gusev, E. Braga, V. Shul′gin, K. Lyssenko, I. Eremenko, L. Samsonova, K. Degtyarenko, T. Kopylova, and W. Linert. Luminescent properties of Zn and Mg complexes on N-(2-carboxyphenyl)salicylidenimine basis. Materials, 2017, 10(8), 897. https://doi.org/10.3390/ma10080897
-
A. W. Jeevadason, K. K. Murugavel, and M. A. Neelakantan. Review on Schiff bases and their metal complexes as organic photovoltaic materials. Renew. Sustain. Energy Rev., 2014, 36, 220-227. https://doi.org/10.1016/j.rser.2014.04.060
-
M. Montazerozohori, S. A. Musavi, A. Masoudiasl, A. Hojjati, and A. Assoud. DFT study and crystal structure analysis of a new nano-structure five coordinated Hg(II) complex involving C–H⋯O, N⋯O and π⋯π interactions in a supra-molecular structure. Spectrochim. Acta, Part A, 2015, 147, 139-150. https://doi.org/10.1016/j.saa.2015.03.028
-
M. Rezaeivala, R. Golbedaghi, and M. Khalili. Coordination chemistry of some new Cu(II), Ni(II) and Co(II) macroacyclic (N2O4) Schiff base complexes: X-ray crystal structure of Cu(II) complex. Russ. J. Coord. Chem., 2016, 42(1), 66-70. https://doi.org/10.1134/s1070328415120064
-
M. A. Diab, A. K. El-Sayed, M. I. Abou-Dobara, H. R. Issa, and A. Z. El-Sonbati. Polymer complexes: LXXX – Characterization, DNA cleavage properties, antimicrobial activity and molecular docking studies of transition metal complexes of Schiff base. J. Iran. Chem. Soc., 2023, 20(6), 1283-1305. https://doi.org/10.1007/s13738-023-02755-4
-
H. Bahron, S. S. Khaidir, A. M. Tajuddin, K. Ramasamy, and B. M. Yamin. Synthesis, characterization and anticancer activity of mono- and dinuclear Ni(II) and Co(II) complexes of a Schiff base derived from o-vanillin. Polyhedron, 2019, 161, 84-92. https://doi.org/10.1016/j.poly.2018.12.055
-
M. Shabbir, I. Ahmad, H. Ismail, S. Ahmed, V. McKee, Z. Akhter, and B. Mirza. Pharmacological, electrochemical and drug–DNA interaction aspects of tridentate Schiff bases and their triphenylphosphine nickel(II) complexes. Polyhedron, 2017, 133, 270-278. https://doi.org/10.1016/j.poly.2017.05.046
-
S. Pandiarajan, N. Hajarabeevi, R. R. Shaikh, S. Raghunathan, and D. MubarakAli. Synthesis and characterization of novel Schiff bases derived from 2-butyl-4-chloro imidazole for the enhanced antimicrobial property. Appl. Biochem. Biotechnol., 2023, 195(1), 253-263. https://doi.org/10.1007/s12010-022-04112-2
-
M. Pavlović, E. Kahrović, S. Aranđelović, S. Radulović, P.-P. Ilich, S. Grgurić-Šipka, N. Ljubijankić, D. Žilić, and J. Jurec. Tumor selective Ru(III) Schiff bases complexes with strong in vitro activity toward cisplatin-resistant MDA-MB-231 breast cancer cells. JBIC, J. Biol. Inorg. Chem., 2023, 28(3), 263-284. https://doi.org/10.1007/s00775-023-01989-0
-
A. Ramesh, R. Pawar, P. Shyam, and A. Ramachandraiah. Synthesis, DFT calculations and biological activity of a new Schiff base of 4-aminoantipyrine and its Co(II), Ni(II), Cu(II) and Zn(II) complexes and crystal structure of the Schiff base. Res. Chem. Intermed., 2021, 47(11), 4673-4697. https://doi.org/10.1007/s11164-021-04552-1
-
A. V. Topchiev, V. V. Korshak, U. A. Popov, and L. D. Rosénstein. Synthesis and study of the photoelectric properties of polyazines and schiff polybases. J. Polym. Sci., Part C: Polym. Symp., 1963, 4(2), 1305-1313. https://doi.org/10.1002/polc.5070040243
-
H. Gupta, K. Kaur, R. Singh, and V. Kaur. Chitosan Schiff base for the spectrofluorimetric analysis of E-waste toxins: Pentabromophenol, Fe3+, and Cu2+ ions. Cellulose, 2023, 30(3), 1381-1397. https://doi.org/10.1007/s10570-022-04966-z
-
A. Jabbari, M. Nikoorazm, and P. Moradi. Two Schiff-base complexes of cadmium and manganese on modified MCM-41 as practical, recyclable and selective nanocatalysts for the synthesis of sulfoxides. J. Porous Mater., 2023, 30(4), 1395-1402. https://doi.org/10.1007/s10934-023-01427-1
-
A. Gusev, E. Braga, A. Tyutyunik, V. Gurchenko, M. Berezovskaya, M. Kryukova, M. Kiskin, and W. Linert. Synthesis, photoluminescence and electrical study of pyrazolone-based azomethine ligand Zn(II) complexes. Materials, 2020, 13(24), 5698. https://doi.org/10.3390/ma13245698
-
W. H. Mahmoud, R. G. Deghadi, and G. G. Mohamed. Novel Schiff base ligand and its metal complexes with some transition elements. Synthesis, spectroscopic, thermal analysis, antimicrobial and in vitro anticancer activity. Appl. Organomet. Chem., 2016, 30(4), 221-230. https://doi.org/10.1002/aoc.3420
-
M. Dolaz and M. Kose. The metal complexes of new Schiff bases containing phosphonate groups and catalytic properties for alkane oxidation. Appl. Organomet. Chem., 2019, 33(8). https://doi.org/10.1002/aoc.4970
-
F. T. Elmali. Synthesis, characterization and DNA binding properties of Schiff base derivatives and Ru(II) complexes. J. Mol. Struct., 2022, 1261, 132900. https://doi.org/10.1016/j.molstruc.2022.132900
-
S. Yadamani, A. Neamati, M. Homayouni-Tabrizi, S. Yadamani, A. Javdani-Mallak, and S. A. Beyramabadi. Anticancer activities of Cu(II) complex-Schiff base and low-frequency electromagnetic fields and the interaction between Cu(II) complex-Schiff base with bovine serum albumin by spectroscopy. Appl. Biochem. Biotechnol., 2020, 190(3), 997-1009. https://doi.org/10.1007/s12010-019-03118-7
-
A. Z. El-Sonbati, W. H. Mahmoud, G. G. Mohamed, M. A. Diab, S. M. Morgan, and S. Y. Abbas. Synthesis, characterization of Schiff base metal complexes and their biological investigation. Appl. Organomet. Chem., 2019, 33(9). https://doi.org/10.1002/aoc.5048
-
S. E.-D. H. Etaiw and M. M. El-Bendary. Silver(I) 3-D-supramolecular coordination frameworks constructed by the combination of coordination bonds and supramolecular interactions. J. Coord. Chem., 2010, 63(6), 1038-1051. https://doi.org/10.1080/00958971003695529
-
L. Zheng, A. Zhou, C. Liao, X. Huang, P. Chen, and S. Hu. Coordination-directed and Hydrogen-bonded assembly of supramolecular architectures constructed from diverse coordination of linear, triangular, tetragonal pyramid, trigonal bipyramid, and octahedral mononuclear units. Z. Anorg. Allg. Chem., 2018, 644(18), 1084-1090. https://doi.org/10.1002/zaac.201800022
-
L.-N. Dong, Y. Tian, X. Li, and Y. Jiang. 3-D frameworks assembled by lanthanide dimers with 1,4-cyclohexanedicarboxylic acid and 1,10-phenanthroline via hydrogen bonds and π–π stacking interactions. J. Coord. Chem., 2010, 63(12), 2088-2096. https://doi.org/10.1080/00958972.2010.498911
-
G. B. Xiao, Z. H. Fang, and X. Q. Yao. A new cadmium(II) coordination polymer extended through hydrogen bonds and π–π stacking interactions: synthesis and photoluminescence property. Chin. J. Struct. Chem., 2018, 37(12), 150-156. https://doi.org/10.14102/j.cnki.0254-5861.2011-2008
-
G. M. Sheldrick. SHELXTL, Version 5.1: Software Reference Manual. Madison, WI, USA: Bruker AXS, 1997.
-
G. M. Sheldrick. SHELXL-97, Program for Crystal Structure Refinement. Göttingen, Germany: University of Göttingen, 1997.
-
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision A.1. Wallingford, CT, USA: Gaussian, 2009.
-
P. Geerlings, F. De Proft, and W. Langenaeker. Conceptual density functional theory. ChemInform, 2003, 34(29), 29289. https://doi.org/10.1002/chin.200329289
-
C. Janiak. ChemInform abstract: A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. ChemInform, 2001, 32(11), 11252. https://doi.org/10.1002/chin.200111252
-
Y. Guo, X. Hu, X. Zhang, X. Pu, and Y. Wang. The synthesis of a Cu(II) Schiff base complex using a bidentate N2O2 donor ligand: crystal structure, photophysical properties, and antibacterial activities. RSC Adv., 2019, 9(71), 41737-41744. https://doi.org/10.1039/c9ra07298e
-
X.-L. Zhang. Synthesis, crystal structures, and antibacterial activities of manganese(II) and copper(II) complexes derived from 2-bromo-4-chloro-6-[(2-hydroxyethylimino)methyl]phenol. Inorg. Nano-Met. Chem., 2017, 47(1), 105-109. https://doi.org/10.1080/15533174.2016.1149729
-
A. K. Patel. Syntheses, Crystal Structures, Magneto-Structural Correlation and Biomimetic Study of Copper(II) Complexes. Vadodara, Gujarat, India: Maharaja Sayajirao University of Baroda, 2021.
-
D. Tomczyk, L. Nowak, W. Bukowski, K. Bester, P. Urbaniak, G. Andrijewski, and B. Olejniczak. Reductive and oxidative electrochemical study and spectroscopic properties of nickel(II) complexes with N2O2 Schiff bases derived from (±)-trans-N,N′-bis(salicylidene)-1,2-cyclohexanediamine. Electrochim. Acta, 2014, 121, 64-77. https://doi.org/10.1016/j.electacta.2013.12.073
-
A. Ourari, I. Bougossa, S. Bouacida, D. Aggoun, R. Ruiz-Rosas, E. Morallon, and H. Merazig. Synthesis, characterization and X-ray crystal structure of novel nickel Schiff base complexes and investigation of their catalytic activity in the electrocatalytic reduction of alkyl and aryl halides. J. Iran. Chem. Soc., 2017, 14(3), 703-715. https://doi.org/10.1007/s13738-016-1022-8
-
X. Hu, Y. Guo, D. Wang, X. Pu, and Q. Chen. Triazine-containing blue emitting Hyperbranched polyamide with donor-acceptor architecture: Synthesis, characterization, optoelectronic properties, and sensing behaviors toward ferric ions. J. Polym. Res., 2018, 25(3), 67. https://doi.org/10.1007/s10965-018-1456-z
-
M. K. Ghosh, S. Pathak, and T. K. Ghorai. Synthesis of two mononuclear schiff base metal (M = Fe, Cu) complexes: MOF structure, dye degradation, H2O2 sensing, and DNA binding property. ACS Omega, 2019, 4(14), 16068-16079. https://doi.org/10.1021/acsomega.9b02268