Abdelhay A, Al Bsoul A, Al-Othman A et al (2018) Kinetic and thermodynamic study of phosphate removal from water by adsorption onto ( Arundo donax ) reeds. Adsorpt Sci Technol 36:46–61. https://doi.org/10.1177/0263617416684347
Abou Taleb M, Mowafi S, Vineis C et al (2020) Effect of alkali metals and alkaline earth metals hydroxides on the structure of wool fibers. J Nat Fibers 00:1–14. https://doi.org/10.1080/15440478.2020.1846659
Ajmal Z, Muhmood A, Usman M et al (2018) Phosphate removal from aqueous solution using iron oxides: adsorption, desorption and regeneration characteristics. J Colloid Interface Sci 528:145–155. https://doi.org/10.1016/j.jcis.2018.05.084
Akoh F, Bouchoum H, El BM et al (2020) Sulfate removal from aqueous solutions using esterified wool fibers: isotherms, kinetic and thermodynamic studies. Desalin Water Treat 194:417–428. https://doi.org/10.5004/dwt.2020.25461
Almanassra IW, Mckay G, Kochkodan V et al (2021) A state of the art review on phosphate removal from water by biochars. Chem Eng J 409:128211. https://doi.org/10.1016/j.cej.2020.128211
Almasri DA, Saleh NB, Atieh MA et al (2019) Adsorption of phosphate on iron oxide doped halloysite nanotubes. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-39035-2
Aluigi A, Zoccola M, Vineis C et al (2007) Study on the structure and properties of wool keratin regenerated from formic acid. Int J Biol Macromol 41:266–273. https://doi.org/10.1016/j.ijbiomac.2007.03.002
Aluigi A, Rombaldoni F, Tonetti C, Jannoke L (2014a) Study of Methylene blue adsorption on keratin nanofibrous membranes. J Hazard Mater 268:156–165. https://doi.org/10.1016/j.jhazmat.2014.01.012
Aluigi A, Tonetti C, Rombaldoni F et al (2014b) Keratins extracted from Merino wool and Brown Alpaca fibres as potential fillers for PLLA-based biocomposites. J Mater Sci 49:6257–6269. https://doi.org/10.1007/s10853-014-8350-9
Alwaan IM, Sabah F (2021) Effect of wool fiber on structural and mechanical properties of styrene-butadiene rubber copolymer. IOP Conf Ser Mater Sci Eng 1094:012130. https://doi.org/10.1088/1757-899x/1094/1/012130
Arivithamani N, Agnes Mary S, Senthil Kumar M, Giri Dev VR (2014) Keratin hydrolysate as an exhausting agent in textile reactive dyeing process. Clean Technol Environ Policy 16:1207–1215. https://doi.org/10.1007/s10098-014-0718-7
Ashtarinezhad A, Shirazi FH, Vatanpour H et al (2014) FTIR-microspectroscopy detection of metronidazole teratogenic effects on mice fetus. Iran J Pharm Res 13:101–111
Baddiel CB (1968) Structure and reactions of human hair keratin: an analysis by infrared spectroscopy. J Mol Biol 38:181–199. https://doi.org/10.1016/0022-2836(68)90405-1
Belukhina O, Milasiene D, Ivanauskas R (2021) Investigation of the possibilities of wool fiber surface modification with copper selenide. Materials (basel) 14:1648. https://doi.org/10.3390/ma14071648
Biju LM, Pooshana V, Kumar PS et al (2022) Treatment of textile wastewater containing mixed toxic azo dye and chromium (VI) BY haloalkaliphilic bacterial consortium. Chemosphere 287:132280. https://doi.org/10.1016/j.chemosphere.2021.132280
Broadbent AD (2005) An introduction to dyes and dyeing. In: Basic principles of textile coloration. Society of Dyers and Colourists, Bradford, West Yorkshire BD1 2JB, England, pp 174–196
Catalano JG, Park C, Fenter P, Zhang Z (2008) Simultaneous inner- and outer-sphere arsenate adsorption on corundum and hematite. Geochim Cosmochim Acta 72:1986–2004. https://doi.org/10.1016/j.gca.2008.02.013
Chattopadhyay DP (2011) 4 – Chemistry of dyeing. In: Clark M (ed) In Woodhead publishing series in textiles, handbook of textile and industrial dyeing, vol 1. Woodhead Publishing, pp 150–183. https://doi.org/10.1533/9780857093974.1.150
Condurache BC, Cojocaru C, Samoila P et al (2021) Data-driven modeling and optimization of oil spill sorption by wool fibers: retention kinetics and recovery by centrifugation. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03176-7
Cui R, Ma J, Jiao G, Sun R (2023) Efficient removal of phosphate from aqueous media using magnetic bimetallic lanthanum-iron-modified sulfonylmethylated lignin biochar. Int J Biol Macromol 247:125809. https://doi.org/10.1016/j.ijbiomac.2023.125809
Dai L, Wang Y, Li Z et al (2020) A multifunctional self-crosslinked chitosan/cationic guar gum composite hydrogel and its versatile uses in phosphate-containing water treatment and energy storage. Carbohydr Polym 244:116472. https://doi.org/10.1016/j.carbpol.2020.116472
de Castro L, Brandão V, Bertolino L et al (2018) Phosphate adsorption by montmorillonites modified with lanthanum/iron and a laboratory test using water from the Jacarepaguá Lagoon (RJ, Brazil). J Braz Chem Soc. https://doi.org/10.21577/0103-5053.20180236
Enkhzaya S, Shiomori K, Oyuntsetseg B (2020) Effective adsorption of Au(III) and Cu(II) by chemically treated sheep wool and the binding mechanism. J Environ Chem Eng 8:104021. https://doi.org/10.1016/j.jece.2020.104021
Farooq U, Phul R, Alshehri SM et al (2019) Electrocatalytic and enhanced photocatalytic applications of sodium niobate nanoparticles developed by citrate precursor route. Sci Rep 9:1–17. https://doi.org/10.1038/s41598-019-40745-w
Fiol N, Villaescusa I (2009) Determination of sorbent point zero charge: usefulness in sorption studies. Environ Chem Lett 7:79–84. https://doi.org/10.1007/s10311-008-0139-0
Flores E, Martinez E, Rodriguez LE et al (2021) Effects of amino acids on phosphate adsorption onto iron (oxy)hydroxide minerals under early earth conditions. ACS Earth Sp Chem 5:1048–1057. https://doi.org/10.1021/acsearthspacechem.1c00006
Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013
Freundlich H (1907) Über die Adsorption in Lösungen. Zeitschrift Für Phys Chemie 57U:385–470. https://doi.org/10.1515/zpch-1907-5723
Fried R, Oprea I, Fleck K, Rudroff F (2022) Biogenic colourants in the textile industry – a promising and sustainable alternative to synthetic dyes. Green Chem 24:13–35. https://doi.org/10.1039/d1gc02968a
Gaidau C, Stanca M, Niculescu M-D et al (2021) Wool keratin hydrolysates for bioactive additives preparation. Materials (basel) 14:4696. https://doi.org/10.3390/ma14164696
Gazioglu Ruzgar D, Altun Kurtoglu S, Bhullar SK (2020) A study on extraction and characterization of keratin films and nanofibers from waste wool fiber. J Nat Fibers 17:427–436. https://doi.org/10.1080/15440478.2018.1500335
Ghodke SA, Sonawane SH, Bhanvase BA, Potoroko I (2018) Advanced engineered nanomaterials for the treatment of wastewater. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813351-4.00055-9
Giesler R, Andersson T, Lövgren L, Persson P (2005) Phosphate sorption in aluminum- and iron-rich humus soils. Soil Sci Soc Am J 69:77–86. https://doi.org/10.2136/sssaj2005.0077a
Goldberg S (2014) Application of surface complexation models to anion adsorption by natural materials. Environ Toxicol Chem 33:2172–2180. https://doi.org/10.1002/etc.2566
Hartley F (1968) Studies in chrome mordanting. II. The binding of chromium(III) cations to wool. Aust J Chem 21:2723. https://doi.org/10.1071/CH9682723
Heliopoulos NS, Papageorgiou SK, Galeou A et al (2013) Effect of copper and copper alginate treatment on wool fabric. Study of textile and antibacterial properties. Surf Coat Technol 235:24–31. https://doi.org/10.1016/j.surfcoat.2013.07.009
Ho YS, McKay G (1999) The sorption of lead(II) ions on peat. Water Res 33:578–584. https://doi.org/10.1016/S0043-1354(98)00207-3
Holkar CR, Jadhav AJ, Bhavsar PS et al (2016) Acoustic cavitation assisted alkaline hydrolysis of wool based keratins to produce organic amendment fertilizers. ACS Sustain Chem Eng 4:2789–2796. https://doi.org/10.1021/acssuschemeng.6b00298
Hou L, Liang Q, Wang F (2020) Mechanisms that control the adsorption–desorption behavior of phosphate on magnetite nanoparticles: the role of particle size and surface chemistry characteristics. RSC Adv 10:2378–2388. https://doi.org/10.1039/C9RA08517C
Hussein FB, Cannon AH, Hutchison JM et al (2024) Phosphate-binding protein-loaded iron oxide particles: adsorption performance for phosphorus removal and recovery from water. Environ Sci Water Res Technol 10:1219–1232. https://doi.org/10.1039/D4EW00052H
İşmal ÖE, Yıldırım L (2019) Metal mordants and biomordants. In: Shahid-ul-Islam, Butola BS (eds) The impact and prospects of green chemistry for textile technology. Woodhead Publishing, pp 57–82. https://doi.org/10.1016/B978-0-08-102491-1.00003-4
Ji Y, Yang X, Ji Z et al (2020) DFT-calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components. ACS Omega 5:8572–8578. https://doi.org/10.1021/acsomega.9b04421
Jiang Z, Li W, Wang Y, Wang Q (2022) Second-order derivation Fourier transform infrared spectral analysis of regenerated wool keratin structural changes. AATCC J Res 9:43–48. https://doi.org/10.1177/23305517211060778
Kar P, Misra M (2004) Use of keratin fiber for separation of heavy metals from water. J Chem Technol Biotechnol 79:1313–1319. https://doi.org/10.1002/jctb.1132
Katata-Seru L, Moremedi T, Aremu OS, Bahadur I (2018) Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: removal of nitrate from water and antibacterial activity against Escherichia coli. J Mol Liq 256:296–304. https://doi.org/10.1016/j.molliq.2017.11.093
Khurana R, Fink AL (2000) Do parallel β-helix proteins have a unique Fourier transform infrared spectrum? Biophys J 78:994–1000. https://doi.org/10.1016/S0006-3495(00)76657-4
Kogawa AC, Cernic BG, de Couto LGD, Salgado HRN (2017) Synthetic detergents: 100 years of history. Saudi Pharm J 25:934–938. https://doi.org/10.1016/j.jsps.2017.02.006
Konadu-Amoah B, Hu R, Ndé-Tchoupé AI et al (2022) Metallic iron (Fe0)-based materials for aqueous phosphate removal: a critical review. J Environ Manag 315:115157. https://doi.org/10.1016/j.jenvman.2022.115157
Kumar SR, Chaudhary S et al (2014) Vibrational studies of different human body disorders using FTIR spectroscopy. Open J Appl Sci 04:103–129. https://doi.org/10.4236/ojapps.2014.43012
Kumar A, Konar A (2011) Dyeing of textiles with natural dyes. In: Natural dyes. InTech. https://doi.org/10.5772/21341
Kwesi Asomaning S (2020) Processes and factors affecting phosphorus sorption in soils. In: Sorption in 2020s. IntechOpen. https://doi.org/10.5772/intechopen.90719
Lagergreen S (1907) Zur Theorie der sogenannten Adsorption gelöster Stoffe. Zeitschrift Für Chemie Und Ind Der Kolloide 2:15–15. https://doi.org/10.1007/BF01501332
Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004
Leduc J-F, Leduc R, Cabana H (2014) Phosphate adsorption onto chitosan-based hydrogel microspheres. Adsorpt Sci Technol 32:557–569. https://doi.org/10.1260/0263-6174.32.7.557
Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275–290. https://doi.org/10.1016/j.biori.2019.09.001
Li Y, Xu R, Wang B et al (2019) Enhanced n-doped porous carbon derived from KOH-activated waste wool: a promising material for selective adsorption of CO2/CH4 and CH4/N2. Nanomaterials 9:266. https://doi.org/10.3390/nano9020266
Li J, Li B, Huang H et al (2020) Investigation into lanthanum-coated biochar obtained from urban dewatered sewage sludge for enhanced phosphate adsorption. Sci Total Environ 714:136839. https://doi.org/10.1016/j.scitotenv.2020.136839
Lin R, Li A, Lu L, Cao Y (2015) Preparation of bulk sodium carboxymethyl cellulose aerogels with tunable morphology. Carbohydr Polym 118:126–132. https://doi.org/10.1016/j.carbpol.2014.10.075
Liu C, Xie C, Liu X (2018) Properties of yak wool in comparison to cashmere and camel hairs. J Nat Fibers 15:162–173. https://doi.org/10.1080/15440478.2016.1212762
Lo Nostro P, Fratoni L, Ninham BW, Baglioni P (2002) Water absorbency by wool fibers: Hofmeister effect. Biomacromol 3:1217–1224. https://doi.org/10.1021/bm0255692
Luo P, Zhao Y, Zhang B et al (2010) Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes. Water Res 44:1489–1497. https://doi.org/10.1016/j.watres.2009.10.042
Mao Y, Yue Q (2016) Kinetic modeling of phosphate adsorption by preformed and in situ formed hydrous ferric oxides at circumneutral pH. Sci Rep 6:1–11. https://doi.org/10.1038/srep35292
McGregor BA, Liu X, Wang XG (2018) Comparisons of the Fourier transform infrared spectra of cashmere, guard hair, wool and other animal fibres. J Text Inst 109:813–822. https://doi.org/10.1080/00405000.2017.1372057
Meenarathi B, Agathian K, Anbarasan R (2023) Modification of wool fibre’s structural properties as a cheap adsorbent for the elimination of Cr6+ and Rhodamine6g dye from aqueous solution. Int J Biol Macromol 253:127160. https://doi.org/10.1016/j.ijbiomac.2023.127160
Mitrogiannis D, Psychoyou M, Baziotis I et al (2017) Removal of phosphate from aqueous solutions by adsorption onto Ca(OH) 2 treated natural clinoptilolite. Chem Eng J 320:510–522. https://doi.org/10.1016/j.cej.2017.03.063
Mochizuki Y, Bud J, Liu J et al (2021) Adsorption of phosphate from aqueous using iron hydroxides prepared by various methods. J Environ Chem Eng 9:104645. https://doi.org/10.1016/j.jece.2020.104645
Mohamed A, Sanchez EPV, Bogdanova E et al (2021) Efficient fluoride removal from aqueous solution using zirconium-based composite nanofiber membranes. Membranes (basel) 11:147. https://doi.org/10.3390/membranes11020147
Mukherjee A, Kabutare YH, Ghosh P (2020) Dual crosslinked keratin-alginate fibers formed via ionic complexation of amide networks with improved toughness for assembling into braids. Polym Test 81:106286. https://doi.org/10.1016/j.polymertesting.2019.106286
Oktor K, Yuzer NY, Hasirci G, Hilmioglu N (2023) Optimization of removal of phosphate from water by adsorption using biopolymer chitosan beads. Water Air Soil Pollut 234:271. https://doi.org/10.1007/s11270-023-06230-x
Ou W, Lan X, Guo J et al (2023) Preparation of iron/calcium-modified biochar for phosphate removal from industrial wastewater. J Clean Prod 383:135468. https://doi.org/10.1016/j.jclepro.2022.135468
Pantoja F, Sukmana H, Beszédes S, László Z (2023) Removal of ammonium and phosphates from aqueous solutions by biochar produced from agricultural waste. J Mater Cycles Waste Manag 25:1921–1934. https://doi.org/10.1007/s10163-023-01687-8
Pap S, Gaffney PPJ, Bremner B et al (2022) Enhanced phosphate removal and potential recovery from wastewater by thermo-chemically calcinated shell adsorbents. Sci Total Environ 814:152794. https://doi.org/10.1016/j.scitotenv.2021.152794
Piotto B, De Falco E, Francioni E et al (2018) Filare, tessere, colorare, creare. Storie di sostenibilità, passione ed eccellenza. QUADERNI ISPRA Ambiente e Società 18/2018
Plazinski W, Rudzinski W, Plazinska A (2009) Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv Colloid Interface Sci 152:2–13. https://doi.org/10.1016/j.cis.2009.07.009
Puttegowda M, Rangappa SM, Jawaid M et al (2018) 15 – Potential of natural/synthetic hybrid composites for aerospace applications. In: Jawaid M, Thariq MBT-SC for AA (eds) Woodhead Publishing Series in Composites Science and Engineering. Woodhead Publishing, pp 315–351
Ramirez DOS, Cruz-Maya I, Vineis C et al (2021) Wool keratin-based nanofibres—in vitro validation. Bioengineering 8:1–10. https://doi.org/10.3390/bioengineering8120224
Ramirez PD, Lee C, Fedderwitz R et al (2023) Phosphate capture enhancement using designed iron oxide-based nanostructures. Nanomaterials 13:587. https://doi.org/10.3390/nano13030587
Ran QC, Zhang DX, Zhu RQ, Gu Y (2012) The structural transformation during polymerization of benzoxazine/ FeCl3 and the effect on the thermal stability. Polymer (guildf) 53:4119–4127. https://doi.org/10.1016/j.polymer.2012.07.033
Regolamento CE (2009) Regolamento (Ce) N. 1069/2009. Gazz Uff Dell’unione Eur 2009:1–33
Rombouts I, Lambrecht MA, Carpentier SC, Delcour JA (2016) Identification of lanthionine and lysinoalanine in heat-treated wheat gliadin and bovine serum albumin using tandem mass spectrometry with higher-energy collisional dissociation. Amino Acids 48:959–971. https://doi.org/10.1007/s00726-015-2139-2
Salam MA, Sheik RK, Farouique FI (2009) Effect of salts on dyeing into jute with reactive, direct, basic and mordant dyes. J Text Apparel Technol Manag 6:1–6
Samaraweera H, Palansooriya KN, Dissanayake PD et al (2023) Sustainable phosphate removal using Mg/Ca-modified biochar hybrids: current trends and future outlooks. Case Stud Chem Environ Eng 8:100528. https://doi.org/10.1016/j.cscee.2023.100528
Sanchez Ramirez DO, Carletto RA, Truffa Giachet F (2019) Keratin processing. In: Sharma S, Kumar A (eds) Keratin as a protein biopolymer. Springer S, Cham, pp 77–121
Sanchez Ramirez DO, Vineis C, Cruz-Maya I et al (2022) Wool keratin nanofibers for bioinspired and sustainable use in biomedical field. J Funct Biomater 14:5. https://doi.org/10.3390/jfb14010005
Shirvanimoghaddam K, Motamed B, Ramakrishna S, Naebe M (2020) Death by waste: fashion and textile circular economy case. Sci Total Environ 718:137317. https://doi.org/10.1016/j.scitotenv.2020.137317
Simonič M, Zemljič LF (2020) Functionalized wool as an efficient and sustainable adsorbent for removal of Zn(II) from an aqueous solution. Materials (Basel) 13. https://doi.org/10.3390/ma13143208
Siwek H, Bartkowiak A, Włodarczyk M (2019) Adsorption of phosphates from aqueous solutions on alginate/goethite hydrogel composite. Water (switzerland) 11:1–13. https://doi.org/10.3390/w11040633
Son C, An W, Lee G et al (2021) Adsorption characteristics of phosphate ions by pristine, CaCl2 and FeCl3-activated biochars originated from tangerine peels. Separations 8:32. https://doi.org/10.3390/separations8030032
Speakman PT, Stone BD (1962) Analysis of the forces in protein dimensional change. Swelling of modified wool keratin in formic acid. Trans Faraday Soc 58:622. https://doi.org/10.1039/tf9625800622
Thistleton J, Berry TA, Pearce P, Parsons SA (2002) Mechanisms of chemical phosphorus removal II. Iron (III) salts. Process Saf Environ Prot Trans Inst Chem Eng Part B 80:265–269. https://doi.org/10.1205/095758202762277623
Tonetti C, Aluigi A, Selmin F et al (2015) Removal of Cu(II) ions from water using thermally-treated horn–hoof powder as biosorbent. Desalin Water Treat 55:1105–1115. https://doi.org/10.1080/19443994.2014.922445
Tummino ML, Nisticò R, Franzoso F et al (2021) The “Lab4treat” outreach experience: preparation of sustainable magnetic nanomaterials for remediation of model wastewater. Molecules 26:3361. https://doi.org/10.3390/molecules26113361
Tummino ML, Varesano A, Copani G, Vineis C (2023) A glance at novel materials, from the textile world to environmental remediation. J Polym Environ 31:2826–2854. https://doi.org/10.1007/s10924-023-02810-4
Tummino ML, Cruz-Maya I, Varesano A et al (2024) Keratin/copper complex electrospun nanofibers for antibacterial treatments: property investigation and in vitro response. Materials (basel) 17:2435. https://doi.org/10.3390/ma17102435
Usman MO, Aturagaba G, Ntale M, Nyakairu GW (2022) A review of adsorption techniques for removal of phosphates from wastewater. Water Sci Technol 86:3113–3132. https://doi.org/10.2166/wst.2022.382
Vineis C, Aluigi A, Tonin C (2011) Outstanding traits and thermal behaviour for the identification of speciality animal fibres. Text Res J 81:264–272. https://doi.org/10.1177/0040517510380779
Višić K, Pušić T, Čurlin M (2021) Carboxymethyl cellulose and carboxymethyl starch as surface modifiers and greying inhibitors in washing of cotton fabrics. Polymers (Basel) 13. https://doi.org/10.3390/polym13071174
Wang Q, Liao Z, Yao D et al (2021a) Phosphorus immobilization in water and sediment using iron-based materials: a review. Sci Total Environ 767:144246. https://doi.org/10.1016/j.scitotenv.2020.144246
Wang X, Shi Z, Zhao Q, Yun Y (2021b) Study on the structure and properties of biofunctional keratin from rabbit hair. Materials (basel) 14:1–15. https://doi.org/10.3390/ma14020379
Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–59. https://doi.org/10.1061/JSEDAI.0000430
Wilfert P, Kumar PS, Korving L et al (2015) The relevance of phosphorus and iron chemistry to the recovery of phosphorus from wastewater: a review. Environ Sci Technol 49:9400–9414. https://doi.org/10.1021/acs.est.5b00150
Wu B, Wan J, Zhang Y et al (2020) Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms. Environ Sci Technol 54:50–66. https://doi.org/10.1021/acs.est.9b05569
Yang B, Han F, Xie Z et al (2022) Study on adsorption of phosphate from aqueous solution by zirconium modified coal gasification coarse slag. RSC Adv 12:17147–17157. https://doi.org/10.1039/D2RA02263J
Zhang G, Liu H, Liu R, Qu J (2009) Removal of phosphate from water by a Fe–Mn binary oxide adsorbent. J Colloid Interface Sci 335:168–174. https://doi.org/10.1016/j.jcis.2009.03.019
Zhang L, Wan L, Chang N et al (2011) Removal of phosphate from water by activated carbon fiber loaded with lanthanum oxide. J Hazard Mater 190:848–855. https://doi.org/10.1016/j.jhazmat.2011.04.021
Zhang P, He M, Huo S et al (2022) Recent progress in metal-based composites toward adsorptive removal of phosphate: mechanisms, behaviors, and prospects. Chem Eng J 446:137081. https://doi.org/10.1016/j.cej.2022.137081