understanding-the-genetic-basis-of-celiac-disease:-a-comprehensive-review-|-cell-biochemistry-and-biophysics-–-springer

Understanding the Genetic Basis of Celiac Disease: A Comprehensive Review | Cell Biochemistry and Biophysics – Springer

References

  1. Parzanese, I., Qehajaj, D., Patrinicola, F., Aralica, M., Chiriva-Internati, M., Stifter, S., & Grizzi, F. (2017). Celiac disease: From pathophysiology to treatment. World Journal of Gastrointestinal Pathophysiology, 8, 27. https://doi.org/10.4291/wjgp.v8.i2.27

    Article  PubMed  PubMed Central  Google Scholar 

  2. Garrote, J. A., Arranz, E., Gómez-González, E., León, A. J., Farré, C., Calvo, & Blanco-Quirós, A. (2005). IL6, IL10 and TGFB1 gene polymorphisms in coeliac disease: differences between DQ2 positive and negative patients. Allergologia et Immunopathologia, 33, 245–249. https://doi.org/10.1157/13080926

    Article  CAS  Google Scholar 

  3. Caio, G., Volta, U., Sapone, A., Leffler, D. A., De Giorgio, R., Catassi, C., & Fasano, A. (2019). Celiac disease: a comprehensive current review. BMC Medicine, 17, 1–20. https://doi.org/10.1186/s12916-019-1380-z

    Article  CAS  Google Scholar 

  4. Kaur, N., Singh, J., Minz, R. W., Anand, S., Saikia, B., Bhadada, S. K., & Dhanda, S. K. (2024). Shared and distinct genetics of pure type 1 diabetes and type 1 diabetes with celiac disease, homology in their auto-antigens and immune dysregulation states: a study from North India. ActaDiabetologica, 61(6), 791–805. https://doi.org/10.1097/2FAIA.0b013e318034194e

    Article  CAS  Google Scholar 

  5. Zhernakova A., Stahl E. A., Trynka G., Raychaudhuri S., Festen E. A., Franke L. et al. (2011) Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genetics 7(2) https://doi.org/10.1371/journal.pgen.1002004

  6. Trynka, G., Hunt, K. A., Bockett, N. A., Romanos, J., Mistry, V., & Szperl, A., et al. (2011). Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nature Genetics, 43(12), 1193–1201. https://doi.org/10.1038/ng.998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghazanfar, H., Javed, N., Lee, S., Shaban, M., Cordero, D., Acherjee, T., Hasan, K. Z., Jyala, A., Kandhi, S., Hussain, A. N., & Patel, H. (2023). Novel Therapies for Celiac Disease: A Clinical Review Article. Cureus, 15, e39004. https://doi.org/10.7759/cureus.39004.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang, J. M., & An, J. (2007). Cytokines, inflammation and pain. IntAnesthesiolClin, 45, 27. https://doi.org/10.1097/2FAIA.0b013e318034194e.

    Article  CAS  Google Scholar 

  9. Mc Manus, R., Wilson, A. G., Mansfield, J., Weir, D. G., Duff, G. W., & Kelleher, D. (1996). TNF2 a polymorphism of the tumour necrosis‐α gene promoter, is a component of the celiac disease major histocompatibility complex haplotype. European Journal of Immunology, 26, 2113–2118

    Article  Google Scholar 

  10. Kekik, Ç., Oguz, F. S., Karahan, G. E., Seyhun, Y., Aslan, E., Bayramicli, O., & Carin, M. (2011). IL-10 and TNF-alpha Gene Polymorphisms in Patients with Celiac Disease ÇölyakHastalarında IL-10 ve TNF-alfa Gen Polimorfizmleri. Turkish Journal of Immunology, 16, 1

    Google Scholar 

  11. Cataldo, F., Lio, D., Marino, V., Scola, L., Crivello, A., Mule, A. M., & del Tenue, C. (2003). Cytokine genotyping (TNF and IL-10) in patients with celiac disease and selective IgA deficiency. The American Journal of Gastroenterology, 98, 850–856. https://doi.org/10.1097/01.gim.0000204464.87540.39

    Article  CAS  PubMed  Google Scholar 

  12. Hahn-Zoric, M., Hytönen, A. M., Hanson, L. Å., Nilsson, L. Å., & Padyukov, L. (2003). Association of− 1087 IL10 and− 308 TNFA gene polymorphisms with serological markers of coeliac disease. Journal of Clinical Immunology, 23, 291–296. https://doi.org/10.1023/a:1024588800754

    Article  CAS  PubMed  Google Scholar 

  13. Hermann, C., Krikovszky, D., Vásárhelyi, B., Dezsőfi, A., & Madácsy, L. (2007). Polymorphisms of the TNF‐α gene and risk of celiac disease in T1DM children. Pediatric Diabetes, 8(3), 138–141. https://doi.org/10.1111/j.1399-5448.2007.00238.x

    Article  PubMed  Google Scholar 

  14. de Albuquerque Maranhão, R. M., Martins Esteves, F. A., Crovella, S., Segat, L., & Eleutério Souza, P. R. (2015). Tumor necrosis factor-α and interleukin-6 gene polymorphism association with susceptibility to celiac disease in Italian patients. Genetics and Molecular Research, 14, 16343–16352. https://doi.org/10.4238/2015

    Article  PubMed  Google Scholar 

  15. Sumnik, Z., Cinek, O., Bratanic, N., Kordonouri, O., Kulich, M., Roszai, B., & Schober, E. (2006). Risk of celiac disease in children with type 1 diabetes is modified by positivity for HLA-DQB1* 02-DQA1* 05 andTNF− 308A. Diabetes Care, 29, 858–863. https://doi.org/10.2337/diacare.29.04.06.dc05-1923

    Article  CAS  PubMed  Google Scholar 

  16. Romanos, J., Barisani, D., Trynka, G., Zhernakova, A., Bardella, M. T., & Wijmenga, C. (2009). Six new coeliac disease loci replicated in an Italian population confirm association with coeliac disease. Journal of Medical Genetics, 46, 60–63. https://doi.org/10.1136/jmg.2008.061457

    Article  CAS  PubMed  Google Scholar 

  17. Woolley, N., Mustalahti, K., Mäki, M., & Partanen, J. (2005). Cytokine gene polymorphisms and genetic association with coeliac disease in the Finnish population. Scandinavian Journal of Immunology, 61, 51–56. https://doi.org/10.1111/j.0300-9475.2005.01525.x

    Article  CAS  PubMed  Google Scholar 

  18. Barisani, D., Ceroni, S., Meneveri, R., Cesana, B. M., & Bardella, M. T. (2006). IL-10 polymorphisms are associated with early-onset celiac disease and severe mucosal damage in patients of Caucasian origin. Genetics in Medicine, 8, 169–174. https://doi.org/10.1097/01.gim.0000204464.87540.39

    Article  CAS  PubMed  Google Scholar 

  19. Akbulut, U. E., Çebi, A. H., Sağ, E., İkbal, M., & Çakır, M. (2017). Interleukin-6 and interleukin-17 gene polymorphism association with celiac disease in children. Turkish Journal of Gastroenterology, 28, 471–5. https://doi.org/10.5152/tjg.2017.17092

    Article  Google Scholar 

  20. Koskinen, L. L., Einarsdottir, E., Dukes, E., Heap, G. A., Dubois, P., Korponay-Szabo, I. R., & Saavalainen, P. (2009). Association study of the IL18RAP locus in three European populations with coeliac disease. Human Molecular Genetics, 18, 1148–1155. https://doi.org/10.1093/hmg/ddn438

    Article  CAS  PubMed  Google Scholar 

  21. Kara, Eren, M., Arslan, S., & Çilingir, O. (2021). IL-15 gene polymorphism in celiac disease patients and their siblings. Turkish Journal of Gastroenterology, 32, 349. https://doi.org/10.5152/tjg.2021.19083

    Article  Google Scholar 

  22. Dezsofi, A., Szebeni, B., Hermann, C. S., Kapitany, A., Veres, G., Sipka, S., & Arató, A. (2008). Frequencies of genetic polymorphisms of TLR4 and CD14 and of HLA-DQ genotypes in children with celiac disease, type 1 diabetes mellitus, or both. Journal of Pediatric Gastroenterology and Nutrition, 47, 283–287. https://doi.org/10.1097/mpg.0b013e31816de885

    Article  CAS  PubMed  Google Scholar 

  23. Popat, S., Hearle, N., Hogberg, L., Braegger, C. P., O’donoghue, D., Falth-Magnusson, K., & Houlston, R. S. (2002). Variation in the CTLA4/CD28 gene region confers an increased risk of coeliac disease. Annals of Human Genetics, 66, 125–137. https://doi.org/10.1017/s0003480002001021

    Article  CAS  PubMed  Google Scholar 

  24. Sansom, D. M. (2000). CD28, CTLA-4 and their ligands: who does what and to whom? Immunity, 101, 169 https://doi.org/10.1046/2Fj.1365-2567.2000.00121

    Article  CAS  Google Scholar 

  25. Woolley, N., Holopainen, P., Bourgain, C., Mustalahti, K., Collin, P., Mäki, M., & Partanen, J. (2002). CD80 (B7‐1) and CD86 (B7‐2) genes and genetic susceptibility to coeliac disease. European Journal of Immunogenetics, 29, 331–333. https://doi.org/10.1046/j.1365-2370.2002.00302.x

    Article  CAS  PubMed  Google Scholar 

  26. Nunez, C., Rueda, B., Martinez, A., Maluenda, C., Polanco, I., Lopez-Nevot, M. A., & Martin, J. (2006). A functional variant in the CD209 promoter is associated with DQ2-negative celiac disease in the Spanish population. World of Journal Gastroenterology: WJG, 12, 4397. https://doi.org/10.3748/wjg.v12.i27.4397

    Article  CAS  PubMed Central  Google Scholar 

  27. Mora, B., Bonamico, M., Indovina, P., Megiorni, F., Ferri, M., Carbone, M. C., & Mazzilli, M. C. (2003). CTLA-4+ 49 A/G dimorphism in Italian patients with celiac disease. Human Immunology, 64, 297–301

    Article  CAS  PubMed  Google Scholar 

  28. Zamani, M., Karami, F., Shirvani, F., Kia-Lashaki, L., & Shahbazkhani, B. (2014). The Role of CD14 and CTLA4 Gene Polymorphisms in Risk of Celiac Disease among Patients of Iranian Ethnicity. Cell Journal (Yakhteh), 16, 171

    CAS  Google Scholar 

  29. Clot, F., Fulchignoni‐Lataud, M. C., Renoux, C., Percopo, S., Bouguerra, F., Babron, M. C., & Serre, J. L. (1999). Linkage and association study of the CTLA‐4 region in coeliac disease for Italian and Tunisian populations. Tissue Antigens, 54, 527–530

    Article  CAS  PubMed  Google Scholar 

  30. Abel, M., Cellier, C., Kumar, N., Cerf-Bensussan, N., Schmitz, J., & Caillat-Zucman, S. (2006). Adulthood-onset celiac disease is associated with intercellular adhesion molecule-1 (ICAM-1) gene polymorphism. Human immunology, 67, 612–617. https://doi.org/10.1016/j.humimm.2006.04.011

    Article  CAS  PubMed  Google Scholar 

  31. Dema, B., Martínez, A., Polanco, I., Maluenda, C., Fernández-Arquero, M., Emilio, G., & Núñez, C. (2008). ICAM1 R241 is not associated with celiac disease in the Spanish population. Human Immunology, 69, 675–678. https://doi.org/10.1016/j.humimm.2008.07.009

    Article  CAS  PubMed  Google Scholar 

  32. Kaur, G., Rapthap, C. C., Kumar, S., Bhatnagar, S., Bhan, M. K., & Mehra, N. K. (2006). Polymorphism in L-selectin, E-selectin and ICAM-1 genes in Asian Indian pediatric patients with celiac disease. Human Immunology, 67, 634–638. https://doi.org/10.1016/j.humimm.2006.05.001

    Article  CAS  PubMed  Google Scholar 

  33. Pehlivan M., Ayna T. K., Baran M., Soyöz M., Koçyiğit AÖ, Çerçi B. & Pirim İ (2021) Investigation of TAGAP gene polymorphism (rs1738074) in Turkish pediatric celiac patients. Turk J Biochem https://doi.org/10.1515/tjb-2020-0419

  34. Plaza-Izurieta, L., Castellanos-Rubio, A., Irastorza, I., Fernández-Jimenez, N., Gutierrez, G., & Bilbao, J. R. (2011). Revisiting genome wide association studies (GWAS) in coeliac disease: replication study in Spanish population and expression analysis of candidate genes. Journal of Medical Genetics, 48, 493–496. https://doi.org/10.1136/jmg.2011.089714

    Article  CAS  PubMed  Google Scholar 

  35. Louka, A. S., Stensby, E. K., Gudjónsdóttir, A. H., Ascher, H., & Sollid, L. M. (2002). Coeliac disease candidate genes: no association with functional polymorphisms in matrix metalloproteinase 1 and 3 gene promoters. Scandinavian Journal of Gastroenterology, 37(8), 931–935. https://doi.org/10.1080/003655202760230892

    Article  CAS  PubMed  Google Scholar 

  36. Mora, B., Bonamico, M., Ferri, M., Megiorni, F., Osborn, J., Pizzuti, A., & Mazzilli, M. C. (2005). Association of the matrix metalloproteinase-3 (MMP-3) promoter polymorphism with celiac disease in male subjects. Human Immunology, 66, 715–719. https://doi.org/10.1016/j.humimm.2005.02.005

    Article  CAS  Google Scholar 

  37. Bister, V., Kolho, K. L., Karikoski, R., Westerholm-Ormio, M., Savilahti, E., & Saarialho-Kere, U. (2005). Metalloelastase (MMP-12) is upregulated in the gut of pediatric patients with potential celiac disease and in type 1 diabetes. Scandinavian Journal of Gastroenterology, 40, 1413–1422. https://doi.org/10.1080/00365520510023918

    Article  CAS  PubMed  Google Scholar 

  38. Amundsen, S. S., Monsuur, A. J., Wapenaar, M. C., Lie, B. A., Ek, J., Gudjónsdóttir, A. H., & Sollid, L. M. (2006). Association analysis of MYO9B gene polymorphisms with celiac disease in a Swedish/Norwegian cohort. Human Immunology, 67, 341–345. https://doi.org/10.1016/j.humimm.2006.03.020

    Article  CAS  PubMed  Google Scholar 

  39. Wolters, V. M., Verbeek, W. H., Zhernakova, A., Onland–Moret, C., Schreurs, M. W., Monsuur, A. J., & Mulder, C. J. (2007). The MYO9B gene is a strong risk factor for developing refractory celiac disease. Clinical Gastroenterology and Hepatology, 5, 1399–1405. https://doi.org/10.1016/j.cgh.2007.08.018

    Article  CAS  PubMed  Google Scholar 

  40. Aflatounian, M., Rezaei, A., Sadr, M., Saghazadeh, A., Elhamian, N., Sadeghi, H., & Rezaei, N. (2017). Association of PTPN22 Single nucleotide polymorphisms with celiac disease. Fetal and Pediatric Pathology, 36, 195–202

    Article  CAS  PubMed  Google Scholar 

  41. Santin, I., Castellanos‐Rubio, A., Hualde, I., Castaño, L., Vitoria, J. C., & Bilbao, J. R. (2007). Toll‐like receptor 4 (TLR4) gene polymorphisms in celiac disease. Tissue Antigens, 70, 495–498. https://doi.org/10.1111/j.1399-0039.2007.00945.x

    Article  CAS  PubMed  Google Scholar 

  42. Aleya, W. B., Sfar, I., Mouelhi, L., Aouadi, H., Makhlouf, M., Ayed-Jendoubi, S., & Gorgi, Y. (2009). Association of Fas/Apo1 gene promoter (-670 A/G) polymorphism in Tunisian patients with IBD. World Journal of Gastroenetrol: WJG, 15(29), 3643. https://doi.org/10.3748/wjg.15.3643

    Article  CAS  Google Scholar 

  43. Wu, J., Alizadeh, B. Z., Veen, T. V., Meijer, J. W., Mulder, C. J. J., & Pena, A. S. (2004). Association of FAS (TNFRSF6)-670 gene polymorphism with villous atrophy in coeliac disease. World Journal of Gastroenterology, 10, 717. https://doi.org/10.3748/2Fwjg.v10.i5.717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo C. C., Huang W., Zhang N., Dong F., Jing L. P., Liu Y. & Jing C. X. (2015) Association between IL2/IL21 and SH2B3 polymorphisms and risk of celiac disease: a meta-analysis. 14:13221-13235. https://doi.org/10.4238/2015

  45. Bid, H. K., Konwar, R., Aggarwal, C. G., Gautam, S., Saxena, M., Nayak, V. L., & Banerjee, M. (2009). Vitamin D receptor (FokI, BsmI and TaqI) gene polymorphisms and type 2 diabetes mellitus: a North Indian study. Indian Journal of Medical Science, 63, 187–194

    Article  Google Scholar 

  46. Vici, G., Camilletti, D., & Polzonetti, V. (2020). Possible role of Vit. D in celiac disease onset. Nutrients, 12, 1051. https://doi.org/10.3390/nu12041051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bilbao, J. R., San Pedro, J. I., Vitoria, J. C., & Castaño, L. (2004). P0446 Vitamin D Receptor (VDR) Gene Polymorphism In Celiac Disease. Journal of Pediatric Gastroenterology, Hepatology and Nutrition, 39, S225

    Article  Google Scholar 

  48. Jankovics, I., Balogh, M., Gyulai, R., Szegedi, G., & Varga, M. Z. (2016). Increased TNF-alpha mRNA expression in the duodenal mucosa of celiac patients. Pathology and Oncology Research, 22(2), 305–309. https://doi.org/10.1007/s12253-015-9957-0

    Article  CAS  Google Scholar 

  49. Asri, N., Mojarad, E. N., Taleghani, M. Y., Houri, H., Niasar, M. S., & Rezaei-Tavirani, M., et al. (2024). Evaluating CD4 and Foxp3 mRNA Expression in Tissue Specimens of Celiac Disease and Colorectal Cancer Patients. Asian Pacific Journal of Cancer Prevention, 25(2), 647–652. https://doi.org/10.31557/APJCP.2024.25.2.647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sanchez, E., Gonzalez-Perez, A., & Gallego, B., et al. (2011). Elevated levels of IL2, IL4, IL21 and IL18RAP, Foxp3 underscore their involvement in the immune response in celiac disease. Cytokine, 54(3), 249–252. https://doi.org/10.1016/j.cyto.2011.01.001

    Article  CAS  Google Scholar 

  51. Taraz T., Asri N., Nazemalhosseini‐Mojarad E., Forouzesh F., Rezaei‐Tavirani M., Rostami‐Nejad M. (2024) Intestinal mRNA expression analysis of polarity‐related genes identified the discriminatory ability of CRB3 as a diagnostic marker for celiac disease. Immunity, Inflammation and Disease 12(2) https://doi.org/10.1002/iid3.1186

  52. Banerjee, M., Thomas, R., & Sarojamma, V., et al. (2024). CDH18 gene expression is downregulated in celiac disease, affecting epithelial membrane organization and integrity. Genes & Immunity, 25(1), 40–47. https://doi.org/10.1038/s41435-023-00216-9

    Article  CAS  Google Scholar 

  53. Caputo, I., Secondulfo, M., Lepretti, M., Paolella, G., Auricchio, S., & Esposito, C. (2010). Differential expression of tissue transglutaminase and matrix metalloproteinase-2 genes in patients with celiac disease and healthy controls. Molecular Cell Biology Research Communications, 3(3), 155–160

    Google Scholar 

  54. Banaganapalli, B., Hussain, T., Khan, I. A., Kasarla, R., & Alrokayan, S. A. (2022). Comprehensive analysis of gene expression profiles reveals pathways pertinent to the pathogenesis of celiac disease. Journal of Advance Research, 30, 99–111. https://doi.org/10.1016/j.jare.2022.01.014.

    Article  CAS  Google Scholar 

  55. Baran M., Ayna T. K., Pehlivan M., Aksoy B., Koçyiğit AÖ, Appak YÇ & Pirim İ (2024). Epigenetic Mechanisms of Genes Influencing Immune Response in Patients with Celiac Disease

  56. Gnodi, E., Meneveri, R., & Barisani, D. (2022). Celiac disease: From genet to epigenet. World Journal of Gastroenterology, 28, 449. https://doi.org/10.3748/2Fwjg.v28.i4.449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Perry A. S., Baird A. M. & Gray, S. G. (2015) Epigenetic methodologies for the study of celiac disease. Celiac Disease: Methods and Protocols 131-158. https://doi.org/10.1007/978-1-4939-2839-2_13

  58. Bascuñán-Gamboa, K. A., Araya-Quezada, M., & Pérez-Bravo, F. (2014). MicroRNAs: An epigenetic tool to study celiac disease. Rev Esp Enferm Dig, 106, 325–333

    PubMed  Google Scholar 

Download references