References
-
Parzanese, I., Qehajaj, D., Patrinicola, F., Aralica, M., Chiriva-Internati, M., Stifter, S., & Grizzi, F. (2017). Celiac disease: From pathophysiology to treatment. World Journal of Gastrointestinal Pathophysiology, 8, 27. https://doi.org/10.4291/wjgp.v8.i2.27
-
Garrote, J. A., Arranz, E., Gómez-González, E., León, A. J., Farré, C., Calvo, & Blanco-Quirós, A. (2005). IL6, IL10 and TGFB1 gene polymorphisms in coeliac disease: differences between DQ2 positive and negative patients. Allergologia et Immunopathologia, 33, 245–249. https://doi.org/10.1157/13080926
-
Caio, G., Volta, U., Sapone, A., Leffler, D. A., De Giorgio, R., Catassi, C., & Fasano, A. (2019). Celiac disease: a comprehensive current review. BMC Medicine, 17, 1–20. https://doi.org/10.1186/s12916-019-1380-z
-
Kaur, N., Singh, J., Minz, R. W., Anand, S., Saikia, B., Bhadada, S. K., & Dhanda, S. K. (2024). Shared and distinct genetics of pure type 1 diabetes and type 1 diabetes with celiac disease, homology in their auto-antigens and immune dysregulation states: a study from North India. ActaDiabetologica, 61(6), 791–805. https://doi.org/10.1097/2FAIA.0b013e318034194e
-
Zhernakova A., Stahl E. A., Trynka G., Raychaudhuri S., Festen E. A., Franke L. et al. (2011) Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genetics 7(2) https://doi.org/10.1371/journal.pgen.1002004
-
Trynka, G., Hunt, K. A., Bockett, N. A., Romanos, J., Mistry, V., & Szperl, A., et al. (2011). Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nature Genetics, 43(12), 1193–1201. https://doi.org/10.1038/ng.998.
-
Ghazanfar, H., Javed, N., Lee, S., Shaban, M., Cordero, D., Acherjee, T., Hasan, K. Z., Jyala, A., Kandhi, S., Hussain, A. N., & Patel, H. (2023). Novel Therapies for Celiac Disease: A Clinical Review Article. Cureus, 15, e39004. https://doi.org/10.7759/cureus.39004.
-
Zhang, J. M., & An, J. (2007). Cytokines, inflammation and pain. IntAnesthesiolClin, 45, 27. https://doi.org/10.1097/2FAIA.0b013e318034194e.
-
Mc Manus, R., Wilson, A. G., Mansfield, J., Weir, D. G., Duff, G. W., & Kelleher, D. (1996). TNF2 a polymorphism of the tumour necrosis‐α gene promoter, is a component of the celiac disease major histocompatibility complex haplotype. European Journal of Immunology, 26, 2113–2118
-
Kekik, Ç., Oguz, F. S., Karahan, G. E., Seyhun, Y., Aslan, E., Bayramicli, O., & Carin, M. (2011). IL-10 and TNF-alpha Gene Polymorphisms in Patients with Celiac Disease ÇölyakHastalarında IL-10 ve TNF-alfa Gen Polimorfizmleri. Turkish Journal of Immunology, 16, 1
-
Cataldo, F., Lio, D., Marino, V., Scola, L., Crivello, A., Mule, A. M., & del Tenue, C. (2003). Cytokine genotyping (TNF and IL-10) in patients with celiac disease and selective IgA deficiency. The American Journal of Gastroenterology, 98, 850–856. https://doi.org/10.1097/01.gim.0000204464.87540.39
-
Hahn-Zoric, M., Hytönen, A. M., Hanson, L. Å., Nilsson, L. Å., & Padyukov, L. (2003). Association of− 1087 IL10 and− 308 TNFA gene polymorphisms with serological markers of coeliac disease. Journal of Clinical Immunology, 23, 291–296. https://doi.org/10.1023/a:1024588800754
-
Hermann, C., Krikovszky, D., Vásárhelyi, B., Dezsőfi, A., & Madácsy, L. (2007). Polymorphisms of the TNF‐α gene and risk of celiac disease in T1DM children. Pediatric Diabetes, 8(3), 138–141. https://doi.org/10.1111/j.1399-5448.2007.00238.x
-
de Albuquerque Maranhão, R. M., Martins Esteves, F. A., Crovella, S., Segat, L., & Eleutério Souza, P. R. (2015). Tumor necrosis factor-α and interleukin-6 gene polymorphism association with susceptibility to celiac disease in Italian patients. Genetics and Molecular Research, 14, 16343–16352. https://doi.org/10.4238/2015
-
Sumnik, Z., Cinek, O., Bratanic, N., Kordonouri, O., Kulich, M., Roszai, B., & Schober, E. (2006). Risk of celiac disease in children with type 1 diabetes is modified by positivity for HLA-DQB1* 02-DQA1* 05 andTNF− 308A. Diabetes Care, 29, 858–863. https://doi.org/10.2337/diacare.29.04.06.dc05-1923
-
Romanos, J., Barisani, D., Trynka, G., Zhernakova, A., Bardella, M. T., & Wijmenga, C. (2009). Six new coeliac disease loci replicated in an Italian population confirm association with coeliac disease. Journal of Medical Genetics, 46, 60–63. https://doi.org/10.1136/jmg.2008.061457
-
Woolley, N., Mustalahti, K., Mäki, M., & Partanen, J. (2005). Cytokine gene polymorphisms and genetic association with coeliac disease in the Finnish population. Scandinavian Journal of Immunology, 61, 51–56. https://doi.org/10.1111/j.0300-9475.2005.01525.x
-
Barisani, D., Ceroni, S., Meneveri, R., Cesana, B. M., & Bardella, M. T. (2006). IL-10 polymorphisms are associated with early-onset celiac disease and severe mucosal damage in patients of Caucasian origin. Genetics in Medicine, 8, 169–174. https://doi.org/10.1097/01.gim.0000204464.87540.39
-
Akbulut, U. E., Çebi, A. H., Sağ, E., İkbal, M., & Çakır, M. (2017). Interleukin-6 and interleukin-17 gene polymorphism association with celiac disease in children. Turkish Journal of Gastroenterology, 28, 471–5. https://doi.org/10.5152/tjg.2017.17092
-
Koskinen, L. L., Einarsdottir, E., Dukes, E., Heap, G. A., Dubois, P., Korponay-Szabo, I. R., & Saavalainen, P. (2009). Association study of the IL18RAP locus in three European populations with coeliac disease. Human Molecular Genetics, 18, 1148–1155. https://doi.org/10.1093/hmg/ddn438
-
Kara, Eren, M., Arslan, S., & Çilingir, O. (2021). IL-15 gene polymorphism in celiac disease patients and their siblings. Turkish Journal of Gastroenterology, 32, 349. https://doi.org/10.5152/tjg.2021.19083
-
Dezsofi, A., Szebeni, B., Hermann, C. S., Kapitany, A., Veres, G., Sipka, S., & Arató, A. (2008). Frequencies of genetic polymorphisms of TLR4 and CD14 and of HLA-DQ genotypes in children with celiac disease, type 1 diabetes mellitus, or both. Journal of Pediatric Gastroenterology and Nutrition, 47, 283–287. https://doi.org/10.1097/mpg.0b013e31816de885
-
Popat, S., Hearle, N., Hogberg, L., Braegger, C. P., O’donoghue, D., Falth-Magnusson, K., & Houlston, R. S. (2002). Variation in the CTLA4/CD28 gene region confers an increased risk of coeliac disease. Annals of Human Genetics, 66, 125–137. https://doi.org/10.1017/s0003480002001021
-
Sansom, D. M. (2000). CD28, CTLA-4 and their ligands: who does what and to whom? Immunity, 101, 169 https://doi.org/10.1046/2Fj.1365-2567.2000.00121
-
Woolley, N., Holopainen, P., Bourgain, C., Mustalahti, K., Collin, P., Mäki, M., & Partanen, J. (2002). CD80 (B7‐1) and CD86 (B7‐2) genes and genetic susceptibility to coeliac disease. European Journal of Immunogenetics, 29, 331–333. https://doi.org/10.1046/j.1365-2370.2002.00302.x
-
Nunez, C., Rueda, B., Martinez, A., Maluenda, C., Polanco, I., Lopez-Nevot, M. A., & Martin, J. (2006). A functional variant in the CD209 promoter is associated with DQ2-negative celiac disease in the Spanish population. World of Journal Gastroenterology: WJG, 12, 4397. https://doi.org/10.3748/wjg.v12.i27.4397
-
Mora, B., Bonamico, M., Indovina, P., Megiorni, F., Ferri, M., Carbone, M. C., & Mazzilli, M. C. (2003). CTLA-4+ 49 A/G dimorphism in Italian patients with celiac disease. Human Immunology, 64, 297–301
-
Zamani, M., Karami, F., Shirvani, F., Kia-Lashaki, L., & Shahbazkhani, B. (2014). The Role of CD14 and CTLA4 Gene Polymorphisms in Risk of Celiac Disease among Patients of Iranian Ethnicity. Cell Journal (Yakhteh), 16, 171
-
Clot, F., Fulchignoni‐Lataud, M. C., Renoux, C., Percopo, S., Bouguerra, F., Babron, M. C., & Serre, J. L. (1999). Linkage and association study of the CTLA‐4 region in coeliac disease for Italian and Tunisian populations. Tissue Antigens, 54, 527–530
-
Abel, M., Cellier, C., Kumar, N., Cerf-Bensussan, N., Schmitz, J., & Caillat-Zucman, S. (2006). Adulthood-onset celiac disease is associated with intercellular adhesion molecule-1 (ICAM-1) gene polymorphism. Human immunology, 67, 612–617. https://doi.org/10.1016/j.humimm.2006.04.011
-
Dema, B., Martínez, A., Polanco, I., Maluenda, C., Fernández-Arquero, M., Emilio, G., & Núñez, C. (2008). ICAM1 R241 is not associated with celiac disease in the Spanish population. Human Immunology, 69, 675–678. https://doi.org/10.1016/j.humimm.2008.07.009
-
Kaur, G., Rapthap, C. C., Kumar, S., Bhatnagar, S., Bhan, M. K., & Mehra, N. K. (2006). Polymorphism in L-selectin, E-selectin and ICAM-1 genes in Asian Indian pediatric patients with celiac disease. Human Immunology, 67, 634–638. https://doi.org/10.1016/j.humimm.2006.05.001
-
Pehlivan M., Ayna T. K., Baran M., Soyöz M., Koçyiğit AÖ, Çerçi B. & Pirim İ (2021) Investigation of TAGAP gene polymorphism (rs1738074) in Turkish pediatric celiac patients. Turk J Biochem https://doi.org/10.1515/tjb-2020-0419
-
Plaza-Izurieta, L., Castellanos-Rubio, A., Irastorza, I., Fernández-Jimenez, N., Gutierrez, G., & Bilbao, J. R. (2011). Revisiting genome wide association studies (GWAS) in coeliac disease: replication study in Spanish population and expression analysis of candidate genes. Journal of Medical Genetics, 48, 493–496. https://doi.org/10.1136/jmg.2011.089714
-
Louka, A. S., Stensby, E. K., Gudjónsdóttir, A. H., Ascher, H., & Sollid, L. M. (2002). Coeliac disease candidate genes: no association with functional polymorphisms in matrix metalloproteinase 1 and 3 gene promoters. Scandinavian Journal of Gastroenterology, 37(8), 931–935. https://doi.org/10.1080/003655202760230892
-
Mora, B., Bonamico, M., Ferri, M., Megiorni, F., Osborn, J., Pizzuti, A., & Mazzilli, M. C. (2005). Association of the matrix metalloproteinase-3 (MMP-3) promoter polymorphism with celiac disease in male subjects. Human Immunology, 66, 715–719. https://doi.org/10.1016/j.humimm.2005.02.005
-
Bister, V., Kolho, K. L., Karikoski, R., Westerholm-Ormio, M., Savilahti, E., & Saarialho-Kere, U. (2005). Metalloelastase (MMP-12) is upregulated in the gut of pediatric patients with potential celiac disease and in type 1 diabetes. Scandinavian Journal of Gastroenterology, 40, 1413–1422. https://doi.org/10.1080/00365520510023918
-
Amundsen, S. S., Monsuur, A. J., Wapenaar, M. C., Lie, B. A., Ek, J., Gudjónsdóttir, A. H., & Sollid, L. M. (2006). Association analysis of MYO9B gene polymorphisms with celiac disease in a Swedish/Norwegian cohort. Human Immunology, 67, 341–345. https://doi.org/10.1016/j.humimm.2006.03.020
-
Wolters, V. M., Verbeek, W. H., Zhernakova, A., Onland–Moret, C., Schreurs, M. W., Monsuur, A. J., & Mulder, C. J. (2007). The MYO9B gene is a strong risk factor for developing refractory celiac disease. Clinical Gastroenterology and Hepatology, 5, 1399–1405. https://doi.org/10.1016/j.cgh.2007.08.018
-
Aflatounian, M., Rezaei, A., Sadr, M., Saghazadeh, A., Elhamian, N., Sadeghi, H., & Rezaei, N. (2017). Association of PTPN22 Single nucleotide polymorphisms with celiac disease. Fetal and Pediatric Pathology, 36, 195–202
-
Santin, I., Castellanos‐Rubio, A., Hualde, I., Castaño, L., Vitoria, J. C., & Bilbao, J. R. (2007). Toll‐like receptor 4 (TLR4) gene polymorphisms in celiac disease. Tissue Antigens, 70, 495–498. https://doi.org/10.1111/j.1399-0039.2007.00945.x
-
Aleya, W. B., Sfar, I., Mouelhi, L., Aouadi, H., Makhlouf, M., Ayed-Jendoubi, S., & Gorgi, Y. (2009). Association of Fas/Apo1 gene promoter (-670 A/G) polymorphism in Tunisian patients with IBD. World Journal of Gastroenetrol: WJG, 15(29), 3643. https://doi.org/10.3748/wjg.15.3643
-
Wu, J., Alizadeh, B. Z., Veen, T. V., Meijer, J. W., Mulder, C. J. J., & Pena, A. S. (2004). Association of FAS (TNFRSF6)-670 gene polymorphism with villous atrophy in coeliac disease. World Journal of Gastroenterology, 10, 717. https://doi.org/10.3748/2Fwjg.v10.i5.717
-
Guo C. C., Huang W., Zhang N., Dong F., Jing L. P., Liu Y. & Jing C. X. (2015) Association between IL2/IL21 and SH2B3 polymorphisms and risk of celiac disease: a meta-analysis. 14:13221-13235. https://doi.org/10.4238/2015
-
Bid, H. K., Konwar, R., Aggarwal, C. G., Gautam, S., Saxena, M., Nayak, V. L., & Banerjee, M. (2009). Vitamin D receptor (FokI, BsmI and TaqI) gene polymorphisms and type 2 diabetes mellitus: a North Indian study. Indian Journal of Medical Science, 63, 187–194
-
Vici, G., Camilletti, D., & Polzonetti, V. (2020). Possible role of Vit. D in celiac disease onset. Nutrients, 12, 1051. https://doi.org/10.3390/nu12041051
-
Bilbao, J. R., San Pedro, J. I., Vitoria, J. C., & Castaño, L. (2004). P0446 Vitamin D Receptor (VDR) Gene Polymorphism In Celiac Disease. Journal of Pediatric Gastroenterology, Hepatology and Nutrition, 39, S225
-
Jankovics, I., Balogh, M., Gyulai, R., Szegedi, G., & Varga, M. Z. (2016). Increased TNF-alpha mRNA expression in the duodenal mucosa of celiac patients. Pathology and Oncology Research, 22(2), 305–309. https://doi.org/10.1007/s12253-015-9957-0
-
Asri, N., Mojarad, E. N., Taleghani, M. Y., Houri, H., Niasar, M. S., & Rezaei-Tavirani, M., et al. (2024). Evaluating CD4 and Foxp3 mRNA Expression in Tissue Specimens of Celiac Disease and Colorectal Cancer Patients. Asian Pacific Journal of Cancer Prevention, 25(2), 647–652. https://doi.org/10.31557/APJCP.2024.25.2.647
-
Sanchez, E., Gonzalez-Perez, A., & Gallego, B., et al. (2011). Elevated levels of IL2, IL4, IL21 and IL18RAP, Foxp3 underscore their involvement in the immune response in celiac disease. Cytokine, 54(3), 249–252. https://doi.org/10.1016/j.cyto.2011.01.001
-
Taraz T., Asri N., Nazemalhosseini‐Mojarad E., Forouzesh F., Rezaei‐Tavirani M., Rostami‐Nejad M. (2024) Intestinal mRNA expression analysis of polarity‐related genes identified the discriminatory ability of CRB3 as a diagnostic marker for celiac disease. Immunity, Inflammation and Disease 12(2) https://doi.org/10.1002/iid3.1186
-
Banerjee, M., Thomas, R., & Sarojamma, V., et al. (2024). CDH18 gene expression is downregulated in celiac disease, affecting epithelial membrane organization and integrity. Genes & Immunity, 25(1), 40–47. https://doi.org/10.1038/s41435-023-00216-9
-
Caputo, I., Secondulfo, M., Lepretti, M., Paolella, G., Auricchio, S., & Esposito, C. (2010). Differential expression of tissue transglutaminase and matrix metalloproteinase-2 genes in patients with celiac disease and healthy controls. Molecular Cell Biology Research Communications, 3(3), 155–160
-
Banaganapalli, B., Hussain, T., Khan, I. A., Kasarla, R., & Alrokayan, S. A. (2022). Comprehensive analysis of gene expression profiles reveals pathways pertinent to the pathogenesis of celiac disease. Journal of Advance Research, 30, 99–111. https://doi.org/10.1016/j.jare.2022.01.014.
-
Baran M., Ayna T. K., Pehlivan M., Aksoy B., Koçyiğit AÖ, Appak YÇ & Pirim İ (2024). Epigenetic Mechanisms of Genes Influencing Immune Response in Patients with Celiac Disease
-
Gnodi, E., Meneveri, R., & Barisani, D. (2022). Celiac disease: From genet to epigenet. World Journal of Gastroenterology, 28, 449. https://doi.org/10.3748/2Fwjg.v28.i4.449.
-
Perry A. S., Baird A. M. & Gray, S. G. (2015) Epigenetic methodologies for the study of celiac disease. Celiac Disease: Methods and Protocols 131-158. https://doi.org/10.1007/978-1-4939-2839-2_13
-
Bascuñán-Gamboa, K. A., Araya-Quezada, M., & Pérez-Bravo, F. (2014). MicroRNAs: An epigenetic tool to study celiac disease. Rev Esp Enferm Dig, 106, 325–333