validation-of-aermod-prediction-accuracy-for-particulate-matters-(pm-–-springer

Validation of AERMOD Prediction Accuracy for Particulate Matters (PM – Springer

  • Ahmad T, Zhang D (2020) A critical review of comparative global historical energy consumption and future demand: the story told so far. Energy Rep 6:1973–1991. https://doi.org/10.1016/j.egyr.2020.07.020

    Article  Google Scholar 

  • Akcin H (2021) A GIS-based building risk assessment for the subsidence due to undercity coal mining activities in Zonguldak, Turkey. Arab J Geosci 14. https://doi.org/10.1007/s12517-021-06702-6

  • Asif Z, Chen Z, Guo J (2018) A study of meteorological effects on PM2.5 concentration in mining area. Atmospheric Pollution Res 9(6):1146–1154. https://doi.org/10.1016/j.apr.2018.01.004

    Article  Google Scholar 

  • Ato García M, López García JJ, Benavente Reche A (2008) Un índice de sesgo entre observadores basado en modelos mixtura [A mixture model-based rater bias index]. Psicothema 20(4):918–923

    Google Scholar 

  • Beersma JJ, Buishand TA (2003) Multi-site simulation of daily precipitation and temperature conditional on the atmospheric circulation. Climate Res 25(2):121–133. http://www.jstor.org/stable/24868391

    Article  Google Scholar 

  • Borrego C, Amorim JH, Tchepel O, Dias D, Rafael S, Sá E, Coelho MC (2016) Urban scale air quality modelling using detailed traffic emissions estimates. Atmos Environ 131:341–351. https://doi.org/10.1016/j.atmosenv.2016.02.017

    Article  Google Scholar 

  • Chang JC, Hanna SR (2004) Air quality model performance evaluation. Meteorol Atmos Phys 87(1–3):167–196. https://doi.org/10.1007/s00703-003-0070-7

    Article  Google Scholar 

  • Chicco D, Warrens MJ, Jurman G (2021) The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci 7:e623. https://doi.org/10.7717/peerj-cs.623

    Article  Google Scholar 

  • Chinthala S, Khare M (2011) Particle Dispersion Within a Deep Open Cast Coal Mine. InTech. https://doi.org/10.5772/16326

  • Chowdari KK, Girisha R, Gouda KC (2015), December A study of rainfall over India using data mining. In 2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT) (pp. 44–47). IEEE. https://doi.org/10.1109/ERECT.2015.7498985

  • Cimorelli AJ, Perry SG, Venkatram A et al (2005) AERMOD: a dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. J Appl Meteorol 44(5):682–693. https://doi.org/10.1175/JAM2227.1

    Article  Google Scholar 

  • Coria J, Bonilla J, Grundström M, Pleijel H (2015) Air pollution dynamics and the need for temporally differentiated road pricing. Transp Res Part A: Policy Pract 75:178–195. https://doi.org/10.1016/J.TRA.2015.03.004

    Article  Google Scholar 

  • CPCB F (2010) Air quality monitoring, emission inventory and source apportionment study for Indian cities. Central Pollution Control Board

  • de Souza DO, dos Santos Alvalá RC (2014) Observational evidence of the urban heat island of Manaus City, Brazil. Meteorol Appl 21(2):186–193. https://doi.org/10.1002/met.1340

    Article  Google Scholar 

  • Derakhshani R, Raoof A, Mahvi AH, Chatrouza H (2019) Similarities in the fingerprints of coal mining activities, high ground water fluoride, and dental fluorosis in Zarand district. kerman province, iran

  • Duveiller G, Fasbender D, Meroni M (2016) Revisiting the concept of a symmetric index of agreement for continuous datasets. Sci Rep 6(1):19401. https://doi.org/10.1038/srep19401

    Article  Google Scholar 

  • Garg T, Kumar N, Chauhan T, Kango R (2016), September Estimation of Reference Evapotranspiration using the FAO Penman-Monteith Method for Climatic Conditions of Himachal Pradesh, India. In Proceedings of National Conference: Civil Engineering Conference–Innovation for Sustainability (CEC–2016) (Vol. 9, p. 10th)

  • Gautam S, Patra AK (2015) Dispersion of particulate matter generated at higher depths in opencast mines. Environ Technol Innov 3:11–27. https://doi.org/10.1016/j.eti.2014.11.002

    Article  Google Scholar 

  • Hadlocon LS, Zhao LY, Bohrer G, Kenny W, Garrity SR, Wang J, Upadhyay J (2015) Modeling of particulate matter dispersion from a poultry facility using AERMOD. J Air Waste Manag Assoc 65(2):206–217. https://doi.org/10.1080/10962247.2014.986306

    Article  Google Scholar 

  • Huertas JI, Huertas ME, Díaz J (2012a) Assessing precision and accuracy of atmospheric emission inventories. Int J Environ Sci Technol 9:195–202. https://doi.org/10.1007/s13762-012-0022-1

    Article  Google Scholar 

  • Huertas JI, Huertas ME, Izquierdo S, González ED (2012b) Air quality impact assessment of multiple open pit coal mines in northern Colombia. J Environ Manage 93(1):121–129. https://doi.org/10.1016/j.jenvman.2011.08.007

    Article  Google Scholar 

  • Ibrahim IA, Ötvös T, Gilmanova A, Rocca E, Ghanem C, Wanat M (2021) International energy agency. Kluwer Law International BV

  • World Energy Balances: Overview. IEA, IEA, Paris (2021) https://www.iea.org/reports/world-energy-balances-overview, Licence: CC BY 4.0

  • Iskandar M, Integration of Csr Projects in Coal Mining Activities in ACEH (2021). Prosiding Temu Profesi Tahunan PERHAPI, 0, 325–336. Retrieved from https://www.prosiding.perhapi.or.id/index.php/prosiding/article/view/164

  • Javed A, Ahmad R, Khan I (2021) Impact of coal mining on landuse/landcover in Singrauli Coalfield, vol GSJ. A study using Remote Sensing & GIS, Central India, 11

    Google Scholar 

  • Jones AM, Harrison RM (2004) The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Sci Total Environ 326(1–3):151–180. https://doi.org/10.1016/j.scitotenv.2003.11.021

    Article  Google Scholar 

  • Kahraman MM, Erkayaoglu M (2021) A data-driven approach to control fugitive dust in mine operations. Min Metall Explor 38(1):549–558. https://doi.org/10.1007/s42461-020-00318-2

    Article  Google Scholar 

  • Khazini L, Dehkharghanian ME, Vaezihir A (2021) Dispersion and modeling discussion of aerosol air pollution caused during mining and processing of open-cast mines. Int J Environ Sci Technol 1–12. https://doi.org/10.1007/s13762-021-03225-1

  • Kundu S, Pal AK (2018) Application of AERMOD model in air quality (PM10) impact assessment of selected opencast mines in the Jharia Coalfield, Jharkhand, India. Environ Prot Eng 44(4):5–21. https://doi.org/10.5277/epe180401

    Article  Google Scholar 

  • Li L, Yang S, Wang Z, Zhu X, Tang H, Arctic (2010) Antarct Alp Res 42(4):449–457. https://doi.org/10.1657/1938-4246-42.4.449

    Article  Google Scholar 

  • Lone BA, Qayoom S, Nazir A, Ahanger SA, Basu U, Bhat TA, Fathallah El-Agamy R (2022) Climatic trends of variable temperate environment: a complete time series analysis during 1980–2020. Atmosphere 13(5):749. https://doi.org/10.3390/atmos13050749

    Article  Google Scholar 

  • Luo H, Zhou W, Jiskani IM, Wang Z (2021) Analyzing characteristics of particulate matter pollution in open-pit coal mines: implications for green mining. Energies 14(9):2680. https://doi.org/10.3390/en14092680

    Article  Google Scholar 

  • Ma CM, Dai EF, Liu YC, Wang YH, Wang F (2020) Methane fugitive emissions from coal mining and post-mining activities in China. Resour Sci 42:311–322

    Google Scholar 

  • Mavrakou T, Philippopoulos K, Deligiorgi D (2012) The impact of sea breeze under different synoptic patterns on air pollution within Athens basin. Sci Total Environ 433:31–43. https://doi.org/10.1016/j.scitotenv.2012.06.011

    Article  Google Scholar 

  • Mishra A, Lal B, Kumar R (2024) Air quality monitoring and its impact on local tree species in and around mining areas of Dhanbad District, Jharkhand, India. Spatial modeling of Environmental Pollution and Ecological Risk. Woodhead Publishing, pp 9–40

  • MoEFCC (2018) Parivesh, EIA-EMP of Dipka Opencast Expansion Project. http://www.environmentclearance.nic.in/onlineSearch.aspx. (Accessed 8 June 2018)

  • Moradi M, Dyer B, Nazem A, Nambiar MK, Nahian MR, Bueno B, Aliabadi AA (2019) The vertical city weather generator (VCWG v1. 0.0). Geosci Model Dev Discuss. https://doi.org/10.5194/gmd-2019-176

    Article  Google Scholar 

  • Panda A, Sahu N (2019) Trend analysis of seasonal rainfall and temperature pattern in Kalahandi, Bolangir and Koraput districts of Odisha, India. Atmospheric Sci Lett 20(10):e932. https://doi.org/10.1002/asl.932

    Article  Google Scholar 

  • Perry SG, Cimorelli AJ, Paine RJ et al (2005) AERMOD: a dispersion model for industrial source applications. Part II: model performance against 17 field study databases. J Appl Meteorol 44(5):694–708. https://doi.org/10.1175/JAM2228.1

    Article  Google Scholar 

  • Peter AE, Nagendra SS (2021) Dynamics of PM 2.5 pollution in the vicinity of the old municipal solid waste dumpsite. Environ Monit Assess 193:1–16. https://doi.org/10.1007/s10661-021-09052-8

    Article  Google Scholar 

  • RAJA KP, Reddy SR (2019) Regression analysis between mean daily intensity, rainy days and seasonal rainfall in normal, excess and deficient years: a case study. Mausam 70(1):141–158

    Article  Google Scholar 

  • Reddy BR, Srinivas CV, Venkatraman B (2023) A simulation study on the recirculation effect of land–sea breeze flows on atmospheric dispersion of airborne releases in Southeast coast of India. Meteorol Atmos Phys 135(5):47. https://doi.org/10.1007/s00703-023-00983-0

    Article  Google Scholar 

  • Ritchie H, Rosado P, Roser M (2020) Energy Production and Consumption. OurWorldInData.org. Retrieved from: https://ourworldindata.org/energy-production-consumption

  • Romana HK, Singh RP, Shukla DP (2020) Long term air quality analysis in reference to thermal power plants using satellite data In Singrauli Region, India. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 829–834. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-829-2020

  • Romana HK, Singh RP, Dubey CS, Shukla DP (2022) Analysis of Air and Soil Quality around Thermal Power plants and Coal Mines of Singrauli Region, India. Int J Environ Res Public Health 19(18):11560. https://doi.org/10.3390/ijerph191811560

    Article  Google Scholar 

  • Rood AS (2014) Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the Winter Validation Tracer Study dataset. Atmos Environ 89:707–720. https://doi.org/10.1016/j.atmosenv.2014.02.054

    Article  Google Scholar 

  • Sahu SP, Yadav M, Rani N, Das AJ (2018b) Assessment of occupational health exposure to particulate matter around opencast coal mines, India: a case study. Arab J Geosci 11. https://doi.org/10.1007/s12517-018-3631-2

  • Scheffran J, Felkers M, Froese R (2020) Economic growth and the global energy demand. Green energy to sustainability: strategies for global industries. https://doi.org/10.1002/9781119152057.ch1

  • Seastedt TR, Bowman WD, Caine TN, McKnight D, Townsend A, Williams MW (2004) The landscape continuum: a model for high-elevation ecosystems. Bioscience 54(2):111–121. https://doi.org/10.1641/0006-3568(2004)054[0111:TLCAMF]2.0.CO;2

    Article  Google Scholar 

  • Sergeev A, Shichkin A, Baglaeva E, Buevich A, Butorova A (2024) A permutation approach to evaluating the performance of a forecasting model of methane content in the atmospheric surface layer of arctic region. Atmospheric Pollution Res 15(2):102000. https://doi.org/10.1016/j.apr.2023.102000

    Article  Google Scholar 

  • Shrestha DP, Saepuloh A, Van Der Meer F (2019) Land cover classification in the tropics, solving the problem of cloud covered areas using topographic parameters. Int J Appl Earth Obs 77:84–93. https://doi.org/10.1016/j.jag.2018.12.010

    Article  Google Scholar 

  • Snoun H, Krichen M, Chérif H (2023) A comprehensive review of gaussian atmospheric dispersion models: current usage and future perspectives. Euro-Mediterranean J Environ Integr 8(1):219–242. https://doi.org/10.1007/s41207-023-00354-6

    Article  Google Scholar 

  • Soler MR, Arasa R, Merino M, Olid M, Ortega S (2011) Modelling local sea-breeze flow and associated dispersion patterns over a coastal area in north-east Spain: a case study. Boundary Layer Meteorol 140:37–56. https://doi.org/10.1007/s10546-011-9599-z

    Article  Google Scholar 

  • Srivastava A, Elumalai SP (2021) Assessment of emission-source contribution to spatial dispersion for coal crusher agglomeration using prognostic model. Clean Eng Technol 3:100113. https://doi.org/10.1016/j.clet.2021.100113

    Article  Google Scholar 

  • Srivastava A, Kumar A, Elumalai SP (2021) Evaluating dispersion modeling of inhalable particulates (PM10) emissions in complex terrain of coal mines. Environ Model Assess 26:385–403. https://doi.org/10.1007/s10666-021-09762-w

    Article  Google Scholar 

  • Srivastava D, Xu J, Vu TV, Liu D, Li L, Fu P, Harrison RM (2021b) Insight into PM2.5 sources by applying positive matrix factorization (PMF) at urban and rural sites of Beijing. Atmos Chem Phys 21(19):14703–14724. https://doi.org/10.5194/acp-21-14703-2021

    Article  Google Scholar 

  • Teggi S, Costanzini S, Ghermandi G, Malagoli C, Vinceti M (2018) A GIS-based atmospheric dispersion model for pollutants emitted by complex source areas. Sci Total Environ 610:175–190. https://doi.org/10.1016/j.scitotenv.2017.07.196

    Article  Google Scholar 

  • The World Counts (Accessed on 08.02.2024) Global energy consumption only going up. https://www.theworldcounts.com/challenges/climate-change/energy/global-energy-consumption

  • ul Haq A, Nadeem Q, Farooq A, Irfan N, Ahmad M, Ali MR (2019) Assessment of AERMOD modeling system for application in complex terrain in Pakistan. Atmospheric Pollution Res 10(5):1492–1497. https://doi.org/10.1016/j.apr.2019.04.006

    Article  Google Scholar 

  • USEPA (1998) Revision of emission factors for AP-42. Chapter 11: mineral products industry. Section 11.9: Western Surface Coal Mining. http://www.epa.gov/ttn/chief/ap42/index.html. Accessed 5 September 2009

  • Valbuena R, Hernando A, Manzanera JA, Görgens EB, Almeida DR, Silva CA, García-Abril A (2019) Evaluating observed versus predicted forest biomass: R-squared, index of agreement or maximal information coefficient? Eur J Remote Sens 52(1):345–358. https://doi.org/10.1080/22797254.2019.1605624

    Article  Google Scholar 

  • Varaprasad V, Kanawade VP, Narayana AC (2024) Association between sea-land breeze and particulate matter in five coastal urban locations in India. Sci Total Environ 913:169773. https://doi.org/10.1016/j.scitotenv.2023.169773

    Article  Google Scholar 

  • Vora J (2010) Dust Dispersion Modeling For Opencast Mines (Doctoral dissertation)

  • Wang L, Ting M, Kushner PJ (2017) A robust empirical seasonal prediction of winter NAO and surface climate. Sci Rep 7(1):279. https://doi.org/10.1038/s41598-017-00353-y

    Article  Google Scholar 

  • Webster HN, Thomson DJ (2022) Using Ensemble Meteorological Data Sets To Treat Meteorological Uncertainties in a bayesian volcanic Ash Inverse modeling system: a Case Study, Grímsvötn 2011. J Geophys Research: Atmos 127(24):e2022JD036469. https://doi.org/10.1029/2022JD036469

    Article  Google Scholar 

  • World Health Organization (2021) WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization

  • Wu Y, Liu J, Zhai J, Cong L, Wang Y, Ma W, Li C (2018) Comparison of dry and wet deposition of particulate matter in near-surface waters during summer. PLoS ONE 13(6):e0199241. https://doi.org/10.1371/journal.pone.0199241

    Article  Google Scholar 

  • Xie D, Wang H, Kearfott KJ, Liu Z, Mo S (2014) Radon dispersion modeling and dose assessment for uranium mine ventilation shaft exhausts under neutral atmospheric stability. J Environ Radioact 134:105–116. https://doi.org/10.1016/j.jenvrad.2013.12.003

    Article  Google Scholar